(†)

Mapping the world's free-flowing rivers using the Connectivity Status Index (CSI)

Günther Grill¹, Bernhard Lehner¹, Michele Tieme², David Ticker³, and Bart Geenen⁴

 ¹ McGill University, Department of Geography, 805 Sherbrooke Street W., Montreal, QC, H3A 0B9, Canada
 ² WWF-US, 1250 24th Street, NW, Washington, DC 20037, USA
 ³ WWF-NL, Postbus 7 3700 AA Zeist, Netherlands
 ⁴ WWF-UK, The Living Planet Centre, Rufford House, Brewery Road, Woking, Surrey, UK GU21 4LL

Contact: Guenther.grill@mail.mcgill.ca / Bernhard.lehner@mcgill.ca

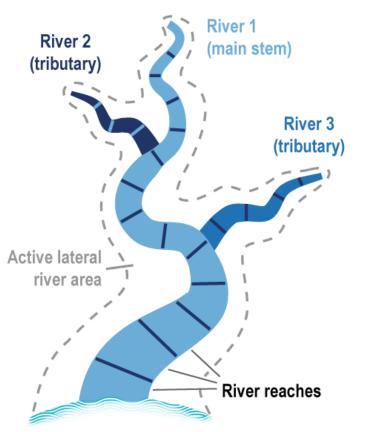
State of freshwater systems in decline globally

Past and current dam building, waterrelated megaprojects and pollution led to rapid loss of freshwater biodiversity and ecosystem services

Goals of this study

- Develop common framework for the identification of freeflowing rivers at multiple scales, and
- create a global inventory of rivers that remain free-flowing today
- Inform research and conservation planning
- provide a new global indicator for monitoring purposes, river health assessments, and river impact studies.

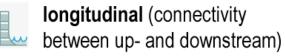
Overview of FFR methodology


Global datasets and models

- Integrating global datasets into HydroSHEDS framework (Lehner et al., 2008).
- Using river routing model HydroROUT (Grill et al., 2015)

Combining multiple pressures

- 6 pressure indicators are combined
- using weighted overlay technique to produce Connectivity Status Index (CSI).
- classification of Freeflowing river status based on CSI.


a) Hydrographic framework

River reach: Smallest element in the river network and unit for calculation of Connectivity Status Index (CSI)

River: Linear feature that consists of multiple river reaches. Tributaries form new rivers. Free-flowing status is determined at scale of entire river.

b) Four dimensions are considered to determine the Connectivity Status Index (CSI) of river reaches

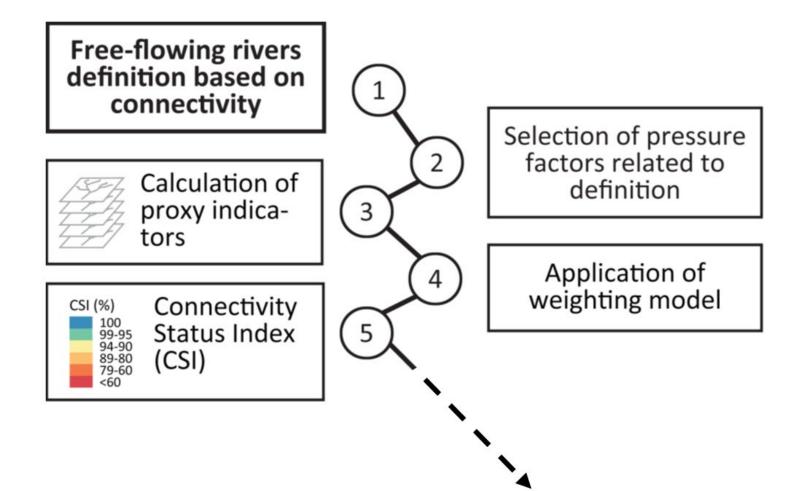
lateral (connectivity to floodplain and riparian areas)

vertical (connectivity to groundwater and atmosphere)

temporal (connectivity based on

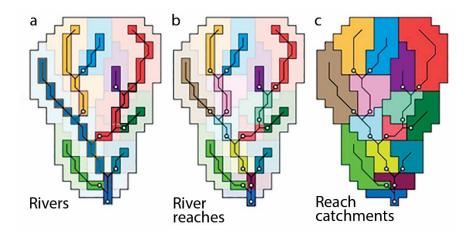
c) Free-flowing river status is determined based on CSI

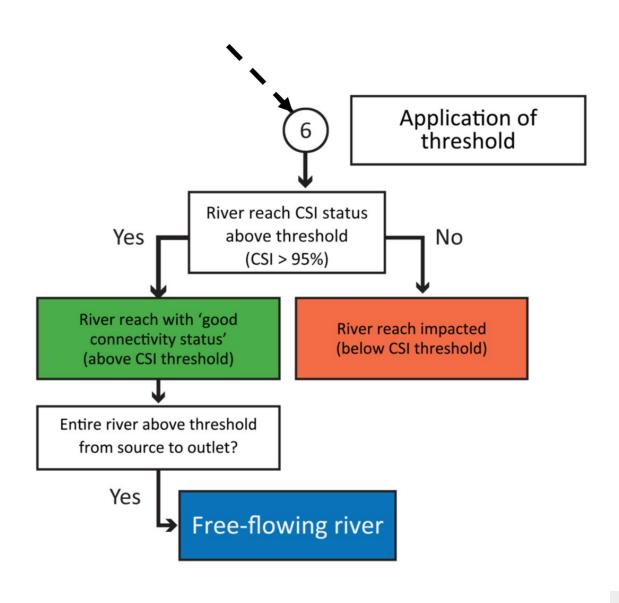
seasonality of flows)


Only rivers with high levels of connectivity (CSI \geq 95%) throughout entire length are considered free-flowing rivers.

d) "A free-flowing river is a river where natural aquatic ecosystem functions and services are largely unaffected by changes to the fluvial connectivity allowing an unobstructed exchange of material, species and energy within the river system and surrounding landscapes.

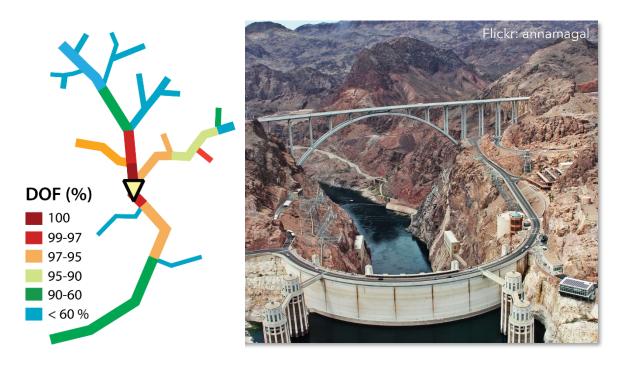
Fluvial connectivity encompasses **longitudinal** (river channel), **lateral** (floodplains), **vertical** (groundwater and atmosphere) and **temporal** (intermittency) components and can be compromised by:


(a) physical infrastructure in the river
channel, along riparian zones, or in
adjacent floodplains;
(b) by hydrological alterations of river
flow due to water abstractions or
regulation; and
(c) by changes to water quality that lead
to ecological barrier effects caused by
pollution or alterations in water
temperature."


Conceptual overview of methodology

Conceptual overview of methodology (cont.)

- Free-flowing river status is determined at the river scale
- Threshold based on benchmarking and sensitivity analysis


Overview of pressure factors and indicators

Pressure factor	Pressure indicator	Description	Connectivity aspect affected	Source data
River fragmentation	DOF	Degree of Fragmentation	Longitudinal	HydroSHEDS; Lehner et al. (2008); GRanD v1.1; Lehner et al. (2011); GOOD2 v1, Mulligan et al. (2009)
Flow regulation	DOR	Degree of Regulation	Lateral, temporal	HydroSHEDS; Lehner et al. (2008); GRanD v1.1; Lehner et al. (2011); GOOD2 v1; Mulligan et al. (2009); HydroLAKES, v1.0; Messager et al. (2016)
Sediment trapping	SED	Sediment trapping index	Longitudinal, lateral, vertical	Erosion map; Borrelli et al. (2017); HydroSHEDS; Lehner et al. (2008); GRanD v1.1; Lehner et al. (2011); GOOD2 v1; Mulligan et al. (2009); HydroLAKES, v1.0; Messager et al. (2016)
Water consumption	USE	Consumptive water use (abstracted from rivers)	Longitudinal, Lateral, vertical, temporal	WaterGAP(Alcamo et al., 2003; Döll et al., 2003) (v2.2 as of 2014); HydroSHEDS; Lehner et al. (2008)
Infrastructure development in	RDD	Road density	Lateral, longitudinal	GRIP v3; Meijer and Klein Goldewijk (2009)
riparian and floodplain areas	URB	Nightlight intensity in urban areas	Lateral	DMSP-OLS v4; Doll (2008); Modis-derived urban areas by Schneider et al. (2009)

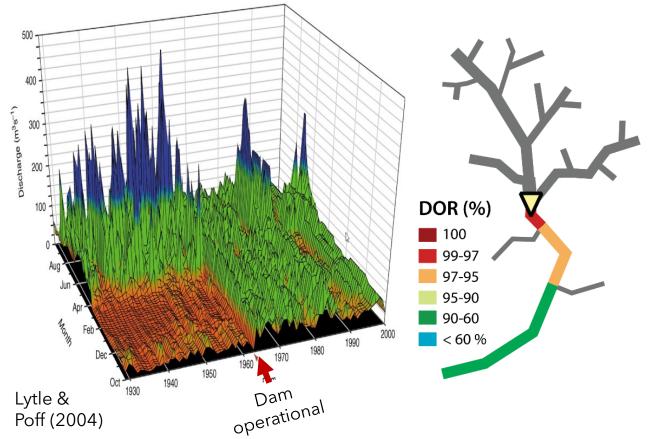
1) River fragmentation

Relates to potential loss of longitudinal connectivity

- > 20,000 dams from GRanD and GOOD2 database (Lehner et al., 2011; Mulligan et al. 2009)
- 2,435 waterfalls were geolocated to our river reaches (natural fragmentation effect)
- Calculated using new indicator: "Degree of Fragmentation" (DOF)

$$DOF_j = 100 - \frac{\left|\log_{10} d_{bloc} - \log_{10} d_j\right| * 100}{\log_{10} dr}$$

 $DOF_j = DOF$ at river reach *j*; d_j is the discharge of river reach *j*; d_{bloc} is the discharge at the location of the barrier; and dr is the maximum discharge range.


2) River Regulation

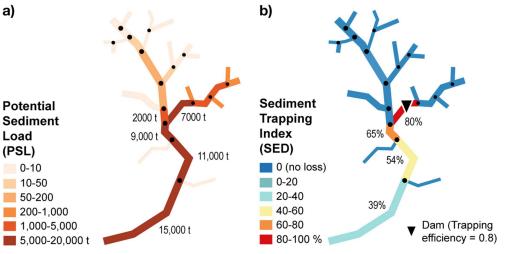
Potential loss of longitudinal and lateral connectivity through flow regulation

 Calculated as the "Degree of Regulation" (DOR) (Lehner et al., 2011)

$$DOR_{j} = 100 * \frac{\sum_{i=1}^{n} svol_{i}}{d_{vol}}$$

 $DOR_{j} = 100 * \frac{Total \ upstream \ storage \ capacity}{Total \ annual \ flow \ volume}$

3) Sediment Trapping


A proxy of dam impacts on longitudinal sediment fluxes in a river network

- using erosion map as basis; both natural and artificial sediment trapping in lakes and reservoirs is considered
- sediment trapping calculations using established Brune's method (1953)
- Sediment Trapping Indicator (SED) at river reach scale = ratio of sediment loss to natural sediment load

$$SED_j = \frac{PSL_j - MSL_j}{PSL_j} * 100$$

 $SED_j = Sediment trapping index at reach j;$ $PSL_j = Potential Sediment Load at reach j;$ $MSL_j = Modified Sediment Load at reach j;$

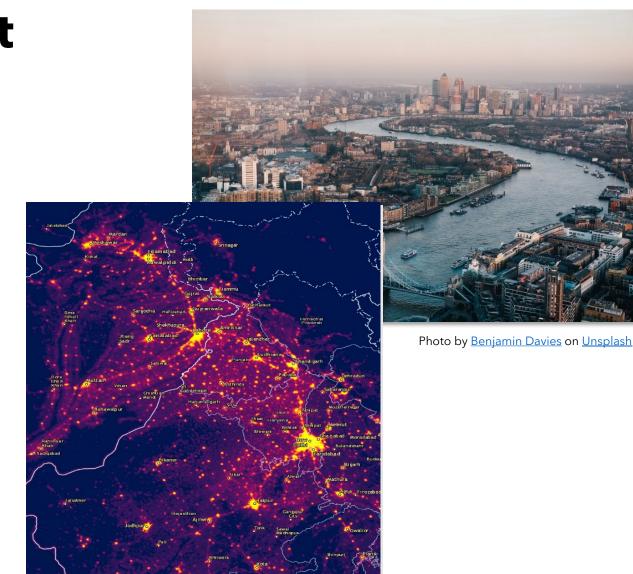
4) Water consumption

Proxy for effects on temporal connectivity and indirectly, lateral connectivity

- Water consumption from irrigation, industry, domestic use and animals (WaterGAP; Döll et al., 2008)
- Ratio of water consumption to mean annual discharge
- For example, ratio of 20% or higher indicates high water stress (Alcamo et al., 2000; Smathkin et al., 2004)

$$USE_j = 100 * \frac{d_{nat} - d_{ant}}{d_{nat}}$$

Lower Colorado; Photos: Dale Turner / TNC


 USE_j is the consumptive water use at river reach *j*; d_{nat} represents the discharge without human influences, and d_{ant} represents the discharge with human

abstractions and use.

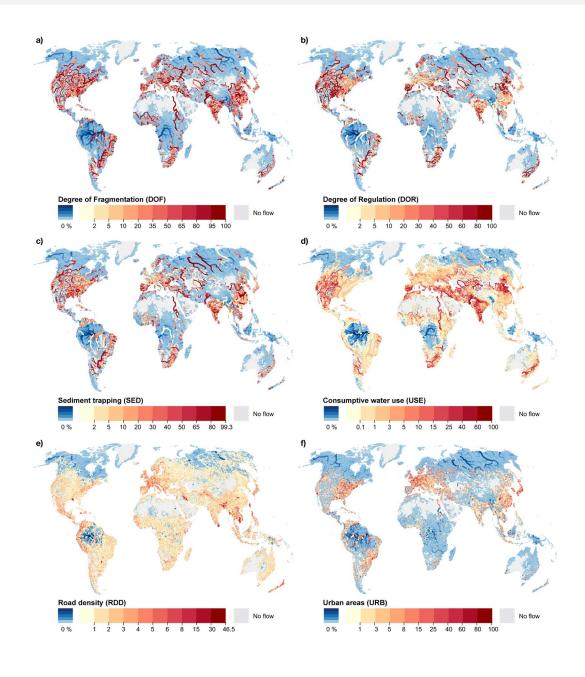
5) Urban development

Proxy for infrastructure development, such as levees, canals, etc.

- Combining urban areas (Schneider et al., 2008) with nightlight intensity
- Nightlights (Doll, 2008) blend population density and GDP
- Index of urbanization (URB): Intensity from 0 to 100 % within 1 km buffer of river

(NOAA; Doll, 2008)

6) Road development


Proxy for assessing effects on lateral connectivity as well as longitudinal connectivity (culverts) at intersections

- Index of road construction (RDD): road density within 1 km buffer of river
- GRIP v3 dataset (Meijer and Klein Goldewijk, 2009)

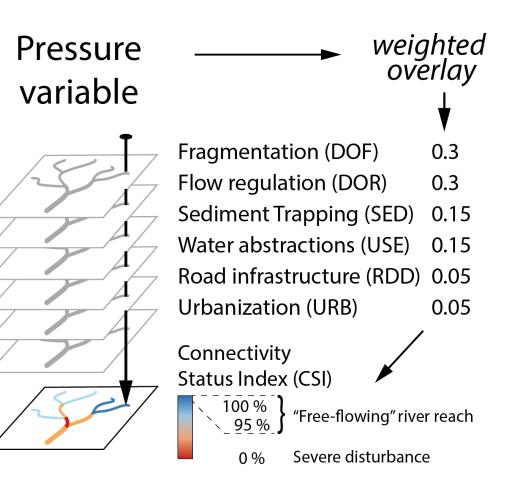
Summary of Pressure indicators

DOF - Degree of Fragmentation DOR - Degree of Regulation SED - Sediment Trapping USE - Water Consumption URB - Urbanization RDD - Road construction

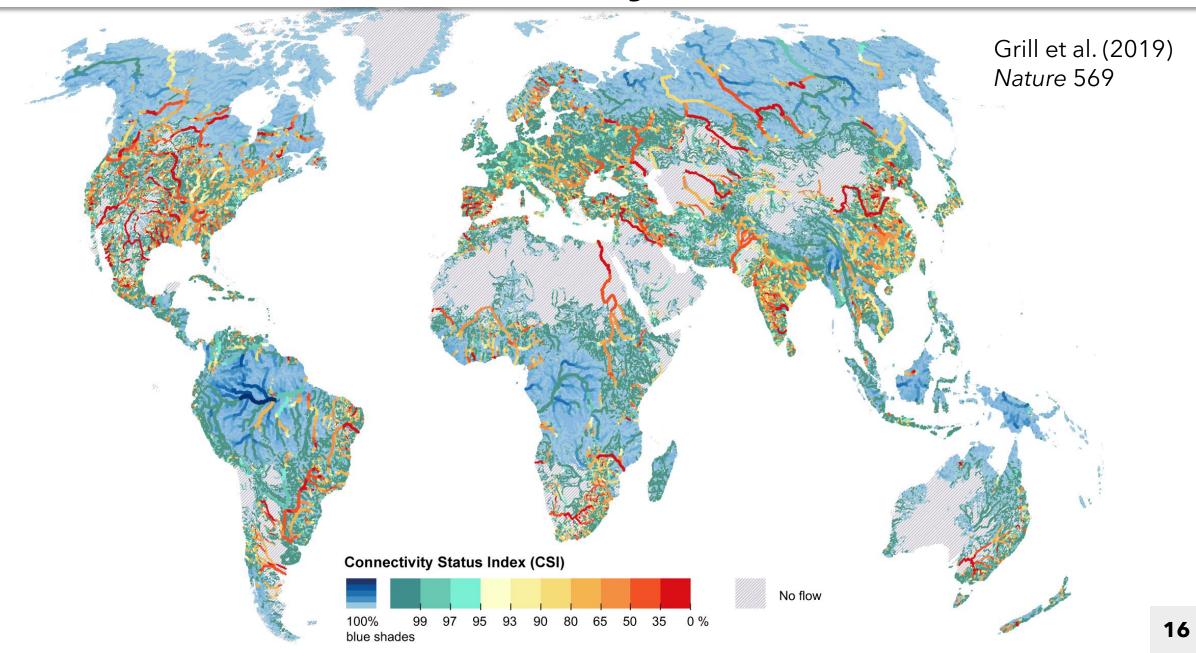
Connectivity Status Index (CSI)

Weighted overlay

$$CSI_{j} = 100 - \frac{\sum_{i=1}^{n} x_{i} * w_{i}}{\sum_{i=1}^{n} w_{i}}$$


 CSI_j is the Connectivity Status Index at reach *j*; x_i is the value of pressure indicator *i*; w_i is the weight applied to the pressure indicator *i*; *n* is the number of pressure indicators

Special weighting if URB or RDD in floodplains


Floodplain weighting:

$$x_i = \tilde{x}_i * (1 + \frac{f_j}{2})$$


 x_i is the value of the pressure indicator *i* (RDD or URB); \tilde{x}_i is the value of the pressure indicator *i* (RDD or URB) without floodplain weighting; and f_j is the fraction of floodplain extent within the contributing sub-catchment of reach *j*.

Global Connectivity Status (CSI)

Free-flowing river status

Conclusion

- Connectivity Status Index (CSI) assesses river connectivity quantitatively in multiple dimensions at the river reach scale
- Free-flowing Status assesses status of entire river based on CSI
- This global assessment provides a baseline for global monitoring of the free-flowing status of rivers.
- Methodology and results can provide valuable inputs to:
 - conduct basin-level planning and decision making,
 - identify rivers for protection,
 - program monitoring and evaluation,
 - targeting restoration opportunities,
 - the evaluation of alternative scenarios for future hydropower and other infrastructure planning

Thank you for your attention!

References

- Doll, C.N. (2008) CIESIN thematic guide to night-time light remote sensing and its applications. *Center for International Earth Science Information Network of Columbia University*, Palisades, NY.
- Döll, P., Berkhoff, K., Bormann, H., Fohrer, N., Gerten, D. (2008) Advances and visions in large-scale hydrological modelling: findings from the 11th workshop on large scale hydrological modelling. *Advances in Geosciences* 18, 51-61.
- Fluet-Chouinard, E., Lehner, B., Rebelo, L.-M., Papa, F., Hamilton, S.K. (2015) Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. *Remote Sensing of Environment* 158, 348-361.
- Grill, G., Lehner, B., Lumsdon, A.E., MacDonald, G.K., Zarfl, C., Reidy Liermann, C.A. (2015) An indexbased framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. *Environmental Research Letters* 10.
- Lehner, B., Liermann, C.R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J.C., Rödel, R., Sindorf, N., Wisser, D. (2011) Highresolution mapping of the world's reservoirs and dams for sustainable river-flow management. *Frontiers in Ecology and the Environment* 9, 494-502.
- Lehner, B., Verdin, K.L., Jarvis, A., (2008) HydroSHEDS technical documentation Version 1.1. *WWF*, Washington, D.C. (Available at http://hydrosheds .cr.usgs.gov), pp. 1-27.
- Meijer, J., Klein Goldewijk, K., (2009) Global roads inventory project (GRIP). *Netherlands Environmental Assessment Agency*, Bilthoven, The Netherlands.
- Opperman, J., Grill, G., Hartmann, J., (2015) The Power of Rivers Finding balance between energy and conservation in hydropower development (in preparation). *The Nature Conservancy*, Washington, DC.
- Pracheil, B.M., McIntyre, P.B., Lyons, J.D. (2013) Enhancing conservation of large-river biodiversity by accounting for tributaries. *Frontiers in Ecology and the Environment* 11, 124-128.
- Sáenz, L., Mulligan, M. (2013) The role of Cloud Affected Forests (CAFs) on water inputs to dams. *Ecosystem Services* 5, 69-77.

nature International journal of science

Article | Published: 08 May 2019

Mapping the world's free-flowing rivers

G. Grill ^{III}, B. Lehner ^{III}, M. Thieme, B. Geenen, D. Tickner, F. Antonelli, S. Babu, P. Borrelli, L. Cheng, H. Crochetiere, H. Ehalt Macedo, R. Filgueiras, M. Goichot, J. Higgins, Z. Hogan, B. Lip, M. E. McClain, J. Meng, M. Mulligan, C. Nilsson, J. D. Olden, J. J. Opperman, P. Petry, C. Reidy Liermann, L. Sáenz, S. Salinas-Rodríguez, P. Schelle, R. J. P. Schmitt, J. Snider, F. Tan, K. Tockner, P. H. Valdujo, A. van Soesbergen & C. Zarfl → Show fewer authors

Nature 569, 215–221 (2019) | Download Citation ±

Link to article

(open-access on Nature's ResearchGate page)

Link to github

(open-access source code)

Link to figshare (open-access datasets)

