

D760 (EGU - 2020 - 22503)

PERFORMANCE ANALYSIS OF TWO-CLASS SVM TO DETECT THIN INTERLAYER DEBONDINGS WITHIN PAVEMENT STRUCTURES

Presenter: Shreedhar Savant Todkar

INTRODUCTION

PROBLEM STATEMENT

- Pavement degradation: surface (cracks) and subsurface defects (delaminations → reflexive cracks)
- Detection using Non-destructive GPR imaging and advanced processing methods

DEBONDINGS CHARACTERISATION

- Debonding: Presence of an additional layer between the top two pavement layers
- Constructive interference of overlapping backscattered echoes ($< \lambda_{mat} / 4$)

Fig 2. Debonding characterisation

OBJECTIVES

- Detection of subsurface millimetre-order debondings
- Use of Supervised machine learning method on timedomain GPR signatures
- > Performance analysis of Two-class SVM using simulated data
- Result analysis of simulated and field data

METHODOLOGY

DATA PREPROCESSING

- Use of time domain statistical signal features
- **Local vs. Global signal features**
- > Feature set consists of:
 - Standard deviation (σ), Amplitude range of second echo (A₂), Skewness (Sk), Kurtosis (Ku), Interquartile range (IQR) and Root-mean square (rms) of the signal

DATA PREPROCESSING

- > Use of automatic time-gating window
- Window length (in terms of number of samples) is a function of the sampling frequency (f_S) and the pulse width of the emitted signal (t_W)

Fig 3. Time-gating of second echo

DATA PREPROCESSING

- > Use of automatic time-gating window
- Window length (in terms of number of samples) is a function of the sampling frequency (f_S) and the pulse width of the emitted signal (t_W)

Fig 4. Ungated vs. Time-gated GPR B-scan

SUPPORT VECTOR MACHINES

- Support Vector Machines (SVM) for twoclasses
- Supervised machine learning method; relies on the use of N-1 dimensional hyperplane to separate the data mapped on a N dimensional hyperspace
- **Minimisation function:**

Minimize
$$\frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} \xi_i$$

Fig 5(a). Example of possible hyperplanes for SVM classification

SUPPORT VECTOR MACHINES

- Learning data is use to create a classification model
- Test data is uses the model to classify unknown data
- > Use of Linear or Non-linear kernels to find the best data separation

Fig 5(a). Example of the optimal hyperplane with max margin

THE SVM APPROACH

SOME RESULTS

DATABASES USED

- **Simulated database**
 - Three permittivity values: 2 (near air-void defects), 10 (near moisture/wet defects)
 - Each B-scan consists of 150 A-scans with 50 debonding and 100 non-debonding A-scans
 - Gaussian noise of 30 dB added to the B-scans
- **Experimental database:**
 - Collected at IFSTTAR's fatigue carousel over various loading stages using UWB SF-GPR
 - Three defect types: Geotextile, Sand and Tack-free based

SENSITIVITY ANALYSIS

- > The study of relationship uncertainties between the input and its outputs
- To observe the robustness and adaptability of a method w.r.t various input data configurations
- > Sensitivity analysis studied:
 - <u>Data-based SA</u>: Effect of learning data size and input feature set
 - Method-based SA: Effect of CV and kernel techniques
 - Pavement-based SA: Effect of debonding thicknesses and composition

SENSITIVITY ANALYSIS

1. SVM performance w.r.t learning data size

SENSITIVITY ANALYSIS

2. SVM performance w.r.t CV techniques

3. SVM performance w.r.t kernel type

CONCLUSIONS & PERSPECTIVES

CONCLUSIONS

- > Performance testing with simulated and field data
- > Sensitivity analysis of the SVM method w.r.t signal features
 - Feature sets: Performance of Local features > Global features
 - CV techniques: k-fold (k=5) presented the best performances
 - Learning data: Optimal learn-to-test ratio is between 1:1 to 3:1
- > Individual signal features do not provide conclusive results on the performance

PERSPECTIVES

- > Improving performance by
 - Implementation of additional time domain features
 - Adapting the conventional Amplitude Ratio test (ART) with SVM
- **Estimation of debonding layer characteristics**

THANK YOU FOR YOUR ATTENTION.