

Causality: predictive framework

Bayesian framework for Causality

- Measures of causality: Grainger, Conditional Mutual Information (CMI),
 Transfer Entropy, Directional Information Transfer, etc.
- We define causality strength as the mutual information normalised by entropy cs = (H(x) H(x | y)) / H(x) = MI(x,y) / H(x)
- Causality strength is based on finite-length time series it contains estimation errors => pdf of cs
- If new information arises, e.g. new time series, do NOT calculate CS for whole time series, but update existing knowledge
- Use existing estimate at prior information p(CS)
- Calculate CS with uncertainty for new time series, and interpret this as new observation of CS:

$$CS_{obs} = CS_{true} + \epsilon$$

Use Bayes Theorem to update knowledge

$$p(CS|CS_{obs}) = \frac{P(CS_{obs}|CS)}{p(CS_{obs})}p(CS)$$

Additional causal processes

We thought the process was

$$x^n = f(x^{n-1}) + \epsilon^{n-1}$$

- The causal connection is quantified in terms of $MI(x^n,x^{n-1})$
- With additional observations of same variable can apply Bayes' theorem to recompute without calculating from scratch
- But new intuition/theory suggests process y is also of interest for process x:

$$x^{n} = f(x^{n-1}) + g(y^{n-1}) + \epsilon^{n-1}$$

 For additional process or random variable y, we need to evaluate the influence of both processes (past observations of x and y). Hence we need conditional mutual information given by

 .

$$CMI(x^{n}, x^{n-1}|y^{n-1})$$
 $CMI(x^{n}, y^{n-1}|x^{n-1})$

Note that the prior for the new connection has to be taken flat.

Problem: Dimension increase of space

1D Prior :
$$p(CS) = p(MI(x^n, x^{n-1}))$$

2D Likelihood :
$$p(CS_{obs}|CS)$$

where
$$CS_{obs} = [CMI(x^n, x^{n-1}|y^{n-1}), CMI(x^n, y^{n-1}|n^{n-1})]$$

- Discontinuity in expanding the model (adding dimension)
- PDF in prior encapsulates uncertainty in vector (x^n, x^{n-1})
- PDF in posterior encapsulates uncertainty in vector (x^n, x^{n-1}, y^{n-1})
- Can't simply use Bayes' theorem!

Solution....Graphical Representation

- We assert that all processes (random variables) already exist; we
 just haven't measured every influence (or causal link)
- Graphical representations provide framework accounting for this space of variables / processes and their relations
- Nodes are random processes; links contain cs
- Figure Black nodes are processes with observed; grey is additional process that appears to have causal influence
- Prior, Likelihood, Posterior distributions on entire network

Jon Williamson, 2000 : Foundations for Bayesian Networks

Solution....Graphical Representation

- Heckerman shows formal way
- If m is model or network structure,

```
p(CS \mid CS_{obs}, \mathbf{m}) = p(CS \mid \mathbf{m}) p(CS_{obs} \mid CS, \mathbf{m}) / p(CS_{obs} \mid \mathbf{m})
where p(CS_{obs} \mid \mathbf{m}) = \int p(CS_{obs} \mid CS, \mathbf{m}) p(CS \mid \mathbf{m}) d(CS)
```

- If all causally relevant nodes or random processes are present, then m representing their collection or network is fixed and dependency drops out
- Back to usual Bayes':
 ⇒ p(CS I CS_{obs}) = p(CS) p(CS_{obs} I CS) / p(CS_{obs})

Toy Model I

- $z^i = \eta z^i$
- $y^i = \eta_y^i$
- $x^{i+1} = 2 y^i + z^i + \eta x^i$

Preliminary

Conclusions

- Strength of causality relationships have uncertainties and therefore a distribution
- Attempt to estimate this from Bayesian framework
- When viewed as a graphical network with all relevant processes present, the estimation reduces to classic Bayes' theorem
- Testing extensively with examples, this can be method can be used to estimate "causality state" upon new insights or observations without recomputing from scratch

Stay tuned....