0 10 20 30 40 50 60 70 80 90 100
Time

Causality : predictive
framework



Bayesian framework for Causality

- Measures of causality : Grainger, Conditional Mutual Information (CMI),
Transfer Entropy, Directional Information Transfer, etc.

* We define causality strength as the mutual information normalised by entropy
cs=(H(x)-HXIly))/H(Xx) = MIl(x,y) / H(x)

- Causality strength is based on finite-length time series it contains estimation
errors => pdf of cs

- If new information arises, e.g. new time series, do NOT calculate CS for whole
time series, but update existing knowledge

- Use existing estimate at prior information p(CS)

- Calculate CS with uncertainty for new time series, and interpret this as new
observation of CS:

CSobs — CStrue + €

- Use Bayes Theorem to update knowledge

P(CSs|CS)
p(CSObS)

p(CS|CSops) = p(CS)



Additional causal processes

»  We thought the process was

xn _ f(ﬂi‘n_1> —I—En_l

« The causal connection is quantified in terms of Mf(iEn, an_l)

- With additional observations of same variable can apply Bayes’

theorem to recompute without calculating from scratch

- But new intuition/theory suggests process y is also of interest for

process X:

"= f@" ) 4 gy )+

- For additional process or random variable y, we need to evaluate the

influence of both processes (past observations of x and y). Hence we
need conditional mutual information given by

CMI(z",a" Hy" ™) OMI(z",y" 2"

* Note that the prior for the new connection has to be taken flat.



Problem : Dimension increase of space
1D Prior : p(CS) = p(MI(z", 2" 1))
2D Likelihood : p(C'Syps|CS)

where CSyps = [CM](.CIZ‘”, xn—l|yn—1)’ CMI(CC”, yn—l‘nn—l)]

 Discontinuity in expanding the model (adding dimension)

- PDF in prior encapsulates uncertainty in vector (z",z" ")

* PDF in posterior encapsulates uncertainty in
vector (gjn7 an_17 yn_l)

- Can’t simply use Bayes’theorem !



Solution....Graphical Representation

- We assert that all processes (random variables) already exist ; we
just haven’t measured every influence (or causal link)

« @Graphical representations provide framework accounting for this
space of variables / processes and their relations

* Nodes are random processes ; links contain cs

 Figure - Black nodes are processes with observed ; grey is
additional process that appears to have causal influence

* Prior, Likelihood, Posterior distributions on entire network
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Compute PDFs by taking different structures

Jon Williamson, 2000 : Foundations for Bayesian Networks
(2007) Causal and Bayesian Networks. In: Bayesian Networks and Decision Graphs. Information Science and Statistics. Springer, New York, NY



Solution....Graphical Representation

- Heckerman shows formal way

- |f m is model or network structure,

P(CS | CSobs, m) = p(CS | m) p(CSobs | CS, m) / p(CSops | M)
where p(CSobs | M) =f p(CSops | CS, m) p(CS | m) d(CS)

- If all causally relevant nodes or random processes are
present, then m representing their collection or network is
fixed and dependency drops out

- Back to usual Bayes’:
= P(CS | CSobs) = P(CS) p(CSobs | CS) / p(CSobs)

Graphical Models : Structure Learning - David Heckerman, Microsoft Research
https://pdfs.semanticscholar.org/b883/049e29f168fab0d3279bebe2ed7381287472.pdf



https://pdfs.semanticscholar.org/b883/049e29f168fab0d3279bebe2ed7381287472.pdf
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Conclusions

- Strength of causality relationships have
uncertainties and therefore a distribution

- Attempt to estimate this from Bayesian framework

- When viewed as a graphical network with all
relevant processes present, the estimation reduces
to classic Bayes’ theorem

+ Testing extensively with examples, this can be
method can be used to estimate “causality state”
upon new insights or observations without
recomputing from scratch



Stay tuned.....



