Development of a Swiss National Soil Spectral Model Library using data-driven modeling

Improving the accuracy and cost-efficiency of soil monitoring in Switzerland with mid-IR spectroscopy and rs-local

Philipp Baumann¹, Anatol Helfenstein², Andreas Gubler³, Reto Meuli³, Armin Keller⁴, Juhwan Lee⁵, Raphael A. Viscarra Rossel⁵, and Johan Six¹ philipp.baumann@usys.ethz.ch | github.com/philipp-baumann Update: 2020-05-06)

Mid-infrared spectroscopy: cost-effective

Scale up soil monitoring with soil spectral libraries?

Instance-based transfer learning vs. general ML

- Cubist hold-out predictions for one site
 - For example: location "70 DIS"
 - Field campaigns every 5 years since 1985
 - Hold-out samples are grouped by location
 - Overall bias (entire SSL) close to zero, but there is "site" bias

- Transfer learning:
 - Transfer from knowledge in an source problem or domain to a target domain
- "Resampling(rs)-local" as a form of *Instance-based transfer learning*
 - Lobsey, C. R., Viscarra Rossel, R. A., Roudier, P., & Hedley, C. B. (2017). rs-local data-mines information from spectral libraries to improve local calibrations: rs-local improves local spectroscopic calibrations. European Journal of Soil Science. https://doi.org/10.1111/ejss.12490
 - "Brute-force peeling"

rs-local in a nutshell

rs-local

Tuning of the resampling-local (rs-local) transfer learning algorithm to choose a SSL subset of size *k* optimized for the local prediction data set

Tuning paramters:

- r
- b
- -k

Performance-driven library reduction

At each iteration *i* + 1, *remove r * nSSL. i* samples that are consistently in weakest models

```
Iteration i = 0: remove
0.05 * 2000 = 100 samples
```

iteration *i* = 1: remove 0.05 * 1900 **= 95 samples**

Weighted ranking based on RMSE:

- Rank samples based on how frequently they appear in models that perform well (RMSE) on site-specific samples
- Weight the ranks by considering the number of times a sample is selected in B repeats

Collect row indices of k selected (**idx**_k) sampled observations together with RMSE_m (local hold-out set)

В	RMSE	idx _k
1	0.23	c(4, 11, 23,)
2	0.11	c(1, 3, 222,)
50	0.15	c(14, 45, 99,)

Prediction on local test set with final PLSR model developed on k subset + mlocal calibration samples

RS-local tuning

• Let's wrap and tune for each NABO site hold-out:

```
(grid_rslocal ← dials::grid_regular(
    rslocal_k %>% value_set(c(30L, 50L, 150L)),
    rslocal_b %>% value_set(c(10L, 20L, 50L)),
    rslocal_r %>% value_set(c(0.2, 0.1, 0.05))
))
```

##	# A	tibbl	.e:	27 x	3		
##	rslocal_k rslocal_b rslocal_r						
##	<int></int>			>	<int></int>	<dbl></dbl>	
##	1	1 30			10	0.2	
##	2	2 50			10	0.2	
##	3		150	9	10	0.2	
##	4	30			20	0.2	
##	5	50			20	0.2	
##	6	150			20	0.2	
##	7	30			50	0.2	
##	8	50		50	0.2		
##	9	150		50	0.2		
##	10	30		10	0.1		
##	#	with	17	more	rows		

RS-Local: tuning results

• RMSE of Cubist vs. RS-local (modeling per site) across 71 NABO sites

Results RS-Local vs. Cubist (rule-based ML)

- 71 NABO sites (~ 5 days on 48 CPU cores (see previous slide ;-))
- RMSE of Cubist vs. RMSE RS-local (tuned separately for each site)
- RS-local: local m samples from locations only used for selection of k SSL samples, not for prediction; to avoid data leakage into test

Next step:

- Alternative selection strategy for rs-local transfer:
 - Use two local calibration/tuning samples (pooling sample replicate measurement) per NABO monitoring site
 - Further minimize data leakage (selection bias) (see slide 3)