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Preferential flow in porous-fractured me-

dia



Fracture scales: Overview
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Scales: mm vs. µm

Breakdown of classical volume-effective ap-

proaches

Challenging: Rapid and erratic flow dynam-

ics

Flowrate dependent flow modes:

Droplets→ rivulets → films

Common force balance:

viscous < inertial < capillary

Apertures above ∼0.8mm: Transition into

inertial regime (Wood et al 2005, WRR)
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What is happening at fracture intersec-

tions?



Analogue percolation experiments
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Laboratory setup (Kordilla et al. 2017, Noffz et al.

2018)

Total flow rate Q0 = 15 ml/min

Flow regimes: Droplet flow (15×1 ml/min)

and rivulet flow (3× 5 ml/min)

Cascade of cubes: 20 cm× 20 cm× 20 cm

Aperture width df = 1 mm and 2.5 mm

Static contact angle θ0 ≈ 65◦
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Analytical model

Fracture inflow: Qf (t) ≡ dMf (t)

dt
= Q0 −

dMb(t)

dt
(1)

Washburn:
dl(t)

dt
=

cf
l(t)

cf =
∆Pc

µ

d2
f

4
(2)

Parallel plate : ∆P =
2σcos(θ)

df
(3)

l(t = t0) = l0 l(t) =
√
l20 + 2cf (t − t0). (4)

Mf (t) = Af l(t) Qf (t) = Af
dl(t)

dt
=

Q0√
1 + 2kf (t − t0)

(5)

kf = cf /l
2
0 (6)
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Regime transitions
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Figure 1: Kordilla et al. (2017)

Both boundary conditions: Recovery of

classical Washburn t−1/2 scaling

Transition times depend on intersection

partitioning dynamics

Rivulet flow: Initially rapid plug flow filling

of horizontal fracture, then transition into

Washburn regime

Droplet flow: Individual droplets bypass un-

til fluid front is closed. Transition into

Washburn regime occurs later
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What about “upscaling”?



Transfer-function

Figure 2: Transfer function ϕ vs. time

(Noffz et al. 2018).

Output signal: Qnf (t) =

∫ t

0

ϕnf (t − t ′)Qnf−1(t ′)

Transfer-function: ϕ(t) =
dQ1(t)

dt
= −dQf (t)

dt

Gaussian: ϕ(t) ∝
exp
[
− (t−µ)2

2σ2

]
√

2πσ2∫ ∞
0

dtϕ(t) = 1

Inflow: Qf ,nf (t) = Q0

[
1−

∫ t

0

dtnf−1ϕ(t − tnf−1)...

∫ t3

0

dt2ϕ(t3 − t2)

∫ t2

0

dt1ϕ(t1)

]
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Transfer-function

Figure 3: Normalized fracture inflow rate vs. time (Noffz et al. 2018).

Predictive modeling

of unsaturated flow

dynamics during rivulet

flow by Gaussian

transfer-function

Better recovery of tail-

ing requires better pro-

cess understanding
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Can we parameterize ϕ(...) to model the

outflow?



Process-based transfer function

ϕpw (t) =
1

Q0

dQ

dt
= δ(tc−t)−W (t)a

Q0
[δ(t − tmax)− δ(t − tc)]+

W ′(t)a

Q0
[H(t − tmax)−H(t − tc)]
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Figure 4: Normalized outflow rate and transfer

function ϕpw (t) = Q−1
0 dQ/dt (Kordilla et al. 2020,

under revision).

Process-basdd normalized outflow via an

analytical approach

Transfer function takes into account the

switch from plug-flow to Washburn-type

flow at a critical time tc

W is a Washburn-type penetration function

applied to a horizontal fracture with aper-

ture a
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Process-based transfer function
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Figure 5: Flow through a system of n = 1, 25 and 50

fractures and Lmax = 0.3 m where tmax > tc (Kordilla

et al. 2020, under revision).

Modeling of outflow through a system of n

fracture intersections

Qn(t) =

∫ t

0

Qn−1(t ′)ϕpw ,p(t − t ′)dt ′ (7)

Simple yet effective analytical approach

Applicable to systems with low matrix

porosity and/or short time-scales

Effect of porous matrix imbibition not yet

included
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What about the porous matrix?



Multiscale SPH

Resolution

constraint:

pore-space

SPH

discretizations

DPS + DFS CPS + DFS

fracture void space fracture void space

droplets,

rivulets

<5000µm

Resolution

constraint:

fracture-space

saturation
fringe

saturation
fringe

discrete

porous

matrix

porous

matrix

continuum discrete gravity-
driven flow

discrete gravity-
driven flow

pore-space

continuum

unsaturated

particles

partially

saturated

particles

fully

saturated

particles

saturation fringe
grain boundary

thickness =
SPH kernel width

air-phase

grain

fluid

particles

grain

grain

pore-throats

<2µm

grain

grain air-phase

nominal
fracture
surface

fluid

particles

air-phase

fluid

particles

pore-space

continuum

fully

saturated

particles

Figure 6: Multiscale SPH coupling scheme (Kordilla 2017)
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Governing Equations

Navier-Stokes equation:
dv

dt
= −1

ρ
∇P +

µ

ρ
∇2v + g

Richards equation:
∂Θ(ψ)

∂t
= (Cm + ρgSeSs)

∂ψ

∂t
= ∇ ·Kskr (ψ)∇ψ +

∂K (ψ)

∂z

Van Genuchten Parameters:

Se = 1[
1+|αψn

]m
Θ = Θr + Se(Θs −Θr )

kr = Se l
[
1−

(
1− Se

1
m

)m]2

Cm = αm
1−m (Θs −Θr )Se

1
m

(
1− Se

1
m

)m


if ψ < 0

Se = 1.0

Θ = Θs

kr = 1.0

Cm = 0.0

 if ψ ≥ 0
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SPH discretization

SPH - discretization of Navier-Stokes equation:

dvi
dt

= −
N∑
j=1

mj

(Pj

ρ2
j

+
Pi

ρ2
i

) rij
rij
· dW (rij , h)

drij
+ 2µ

N∑
j=1

mj
vij

ρiρj rij
· dW (rij , h)

drij
+

g +
1

mi

N∑
j=1

sij(AijW̃ (rij ,
h

2
)
rij
rij
− W̃ (rij , h)

rij
rij

)

SPH - discretization of Richards equation:

dΘi

dt
= (Cmi + ρigSeiSi )

dψi

dt
=

N∑
j=1

2
mimj

mi + mj

ρi + ρj
ρiρj

·Kskri (dψij + dzij) ·
dW (rij , h)

drij
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Droplet infiltration

Water
content

0.2
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The experimental (top) and simulation (bottom) results

of droplet imbibition at different times: (a) t0 = −0.004 s,

(b) t1 = 0.396 s, (c) t2 = 1.836 s, and (d) t3 = 2.676 s

(Shigorina et al. 2020, under revision).

Saturation of solid by water par-

ticles (no penetration)

Water particles are removed if

their virtual saturation falls below

critical threshold

Mass conservation:

∂Θ
∂t = ∇ · (

∑
qin −

∑
qout) = 0

Total water content:

Θtotal = const
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Validation experiment

(a)                              (b)                              (c)                               (d)                                (e)

Experimental (top) and simulation (bottom) results of in-

filtration into a sandstone: (a) t1 = 3 s; (b) t2 = 16 s; (c)

t3 = 30 s; (d) t4 = 50 s; (e) t5 = 100 s (Shigorina et al.

2020, under revision).
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What about reality?



Figure 7: Flow through fracture networks and well-known topology/geometry (Rüdiger et al. 2020,

under revision).

Effect of adjacent porous matrix

Connection between fracture topology/geometry, matrix properties and infiltration

dynamics

Relation to field site experiments?

Effects of dimension reduction, 2D vs. 3D?
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Conclusion



Conclusion

Fracture networks provide rapid bypass capacities

Fracture intersections are critical relay points for rapid infiltration

Transfer function can be obtained/enhanced via small-scale process analysis

The porous matrix plays a crucial role in the redistribution and large-scale dispersion

dynamics

Field experiments and analogue fracture setups are required to cross-validate findings and

explore the quality of analytical abstraction
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Stay healthy and see you next year!
–

Questions? Drop me a mail or join our live chat:
Tuesday, 5 May 2020, 08:30–10:15.

www.janneskordilla.org

jkordil@gwdg.de
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