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Introduction

Characterizing the geometry of permeable faults or fractures is critical to many
subsurface applications. It is a key step, for example, in the planning of deep
geothermal energy projects and nuclear waste storage facilities, and requires ad-
vanced geophysical imaging methods. Here, we present a new approach to ex-
tract information on fracture orientation from borehole thermal anomalies. This
method assumes the occurrence of a single fracture surrounded by impermeable
rock, intersected by a borehole (equipped with temperature sensors) at a known
distance to a heat source.

Model of heat conduction from a planar fracture

We assume a planar fracture heated from a point source, intersecting a borehole
at a discrete location (Fig. 1). Conduction parallel to the fracture is neglected so
that the matrix temperature can be expressed as:

Tm(x, y, t) =

t∫
0

dt′g(y, t− t′)Tf(x, t
′), (1)

where g(y, t) is the Green function of the heat equation for a Dirac boundary. It is
assumed that the initial temperature of the matrix is the same as the temperature
of the fracture Tf(x, t

′).
The temperature profile in a borehole which intersects a heat carrying fracture is

given by:

Tm(y, t) =

t∫
0

dt′g(y, t− t′)Tf [a(y + b], t′). (2)

Synthetic temperature profiles are illustrated on Fig. 2, showing the effect of
varying fracture orientation from 0-80◦ and time. A finite-element model was
setup using the software package COMSOL v5.3 to confirm that lateral heat con-
duction is negligible (see Fig. 2, right panel).

Field application

Site & Experimental procedure

To test our approach, we performed a 40-day cross-hole heat injection experi-
ment at the Grimsel Rock Laboratory, Switzerland, targeting shallow (0.5 km
depth) crustal faults dissecting the Central Aar Massif (Fig. 3). Hot water injec-
tion was carried out with an electrical flow-through heater , heating water up to 45
◦C at a flow rate of 2.0-2.5 L/min. Distributed temperature measurements were
acquired in six boreholes through single-ended measurements using a 4-channel
XT-DTSTM Silixa system, with a 0.25 m spatial resolution.
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Figure 1: Sketch illustrating the impact of fracture orientation on conduction-dominated heat
flow anomalies in borehole temperature profiles.

Figure 2: Synthetic borehole temperatures for various fracture orientations (left and center pan-
els). Analytic and numerical solutions for a 80◦ fracture (right panel).

Figure 3: Distributed temperature sensing was
carried out using 6 boreholes: 3 packed-off
(PRP) and 3 grouted boreholes (FBS). The star
denotes the injection point.

Initial results

Discrete thermal breakthroughs
were observed in all six bore-
holes. Temperature profiles
for FBS2 after 20, 30 and 40
days are plotted on Fig. 4,
including also fracture density
(p10) and initial fits (indicating a
good match between 50-60◦, i.e.
within the range of orientations
observed).

Outlook

Results suggest that temperature
signals carry structural informa-
tion which may help to con-
strain flow paths geometry in
sparse fractured media. Numer-
ical inversion of the field data
are currently undertaken.

Figure 4: Temperature along FBS2 after 20, 30 and 40 days (left). Fracture density (blue) and
intersections (gray lines, the orange line denotes a fault). Manual fits to observed temperatures
(right).


