

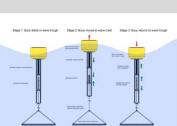
A machine learning approach to achieve accurate time series forecast of sea-wave conditions

Giulia Cremonini, Daniele Lagomarsino, Agnese Seminara, Giovanni Besio

Motivation

DICCA DIPARTIMENTO
DI INGEGNERIA CIVILE, CHIMICA
E AMBIENTALE

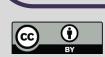
There are myriad reasons why predicting wave conditions is important



Prediction of wave conditions is very important in several engineering applications

THE MAIN AIM

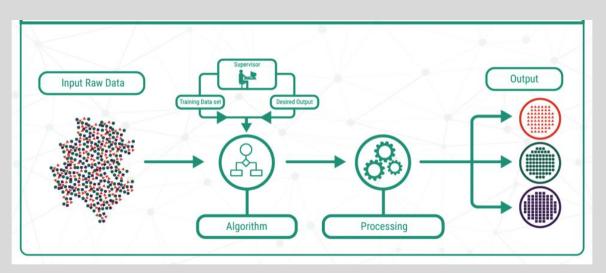
Development of a machine learning framework for the estimation and forecasting of sea conditions



Supervised Machine Learning

Because wave models can be computationally expensive, a new approach with machine learning is developed here

S. L. is the machine learning task of learning a function that maps an input to an output based on example input-output pairs.



A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples.

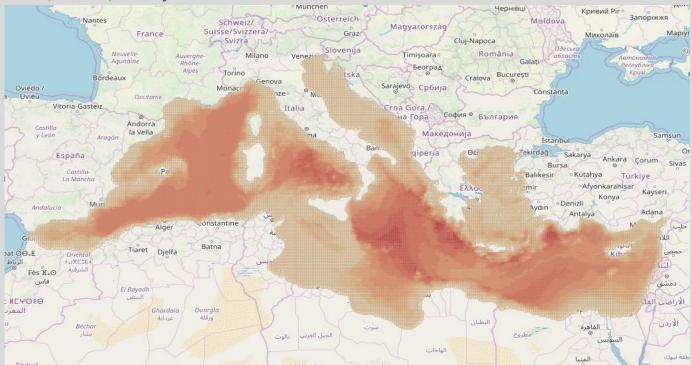
WHY? Supervised Machine Learning

- Database with high spatial and temporal resolution (> 300 000 data) → LARGE AMOUNT OF DATA
- Accurate forecast of wave conditions → DECREASE OF
 COMPUTATION COSTS
- Improvement of the evaluation for various lead times and for different met-ocean variables

Data & Methods

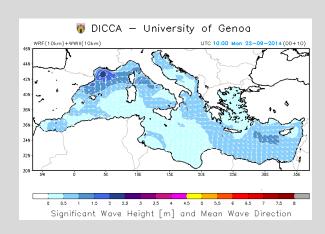
- Hindcast Database: with re-analysis of atmospheric and wave conditions over the whole Mediterranean Basin
- 40 years (1979-2018) time series of wave and wind parameters, hourly defined, with a 0,1°x0,1° spatial resolution

In our analysis
we retain only
the wave height
time series

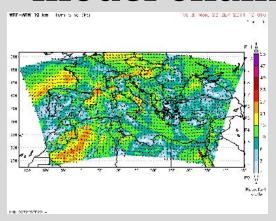


http://www3.dicca.unige.it/meteocean/hindcast.html

1. WRF-ARW: the non-hydrostatic mesoscale model to provide the 10m wind fields of Mediterranean Sea



The numerical model chain



2. WaveWatchIII used for re-analysis of wave conditions, with a spatial resolution of 10 km at the latitude of 45°N

Forecast Service: 120 hours wave forecasts for the Mediterranean Basin, published daily.

Data & Methods

Regularized Linear Regression

Regularized Least Squares is a family of methods for solving the least-squares problem while using regularization to further constrain the resulting solution $\min_{w \in \mathbb{R}^D} \frac{1}{n} \sum_{i=1}^n (y_i - w^\top x_i))^2 + \lambda w^\top w, \quad \lambda \geq 0.$

where λ is a regularizer and helps preventing overfitting by controlling the stability of the solution

My problem is: Y = wX

and the *goal* is to find the coefficients (w) in order to solve the equation for a specific value of λ .

Data & Methods

Our Approach

- 1. Definition of training- validation dataset (30 years) and test set (10 years)
- 2. K-fold Cross-Validation:
- Partition of the T-V set into K subsets
- For each subset a RLS analysis is performed and the RMSE error is calculated
- A single subsample is retained as the validation data for testing the model,
 and the remaining k 1 subsamples are used as training data

the mean λ value (over the K iterations), referred to the smallest error, defines the model to use

From a matrix point of view, in each analysis

- Input X: is built considering a short time frame (Memory, ΔT) of H, shifted of an hour $H_S = [x]$
- Output Y: is the $\Delta T + y^*$ element of the series (y^* represent the lead time of prediction)

$$X = \begin{bmatrix} x_1 & \dots & x_{\Delta T} \\ \vdots & \ddots & \vdots \\ x_{N-\Delta T+1} & \dots & x_{N-y^*} \end{bmatrix}$$

$$Y = \begin{bmatrix} y_{\Delta T+y^*} \\ \vdots \\ y_N \end{bmatrix}$$

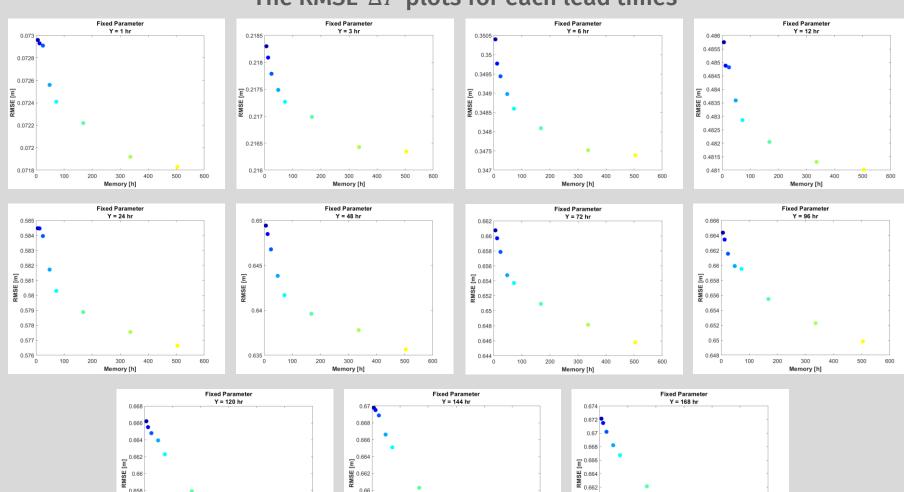
$$Y = \begin{bmatrix} y_{\Delta T+y^*} \\ \vdots \\ y_N \end{bmatrix}$$

Analysis of each combination $\Delta T - y^*$: $\Delta T = 6, 12, 24, 48, 72, 168, 336, 504$ hr; $y^* = 1, 3, 6, 12, 24, 48, 72, 96, 120, 144, 168$ hr

Results

Performances

The RMSE- ΔT plots for each lead times



300 Memory [h] 0.66

0.658

0.656

0.654

Memory [h]

0.66

0.658

0.656

0.654

0.658

0.656

0.654

0.652

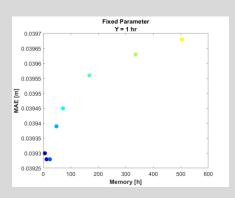
300

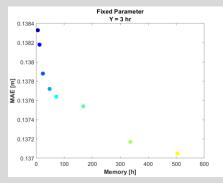
Memory [h]

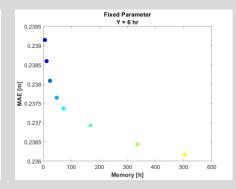
Results

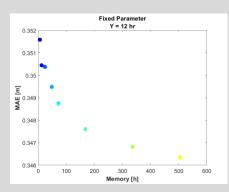
Performances

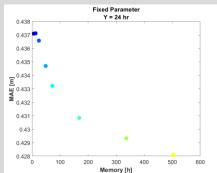
The MAE- ΔT plots for each lead times

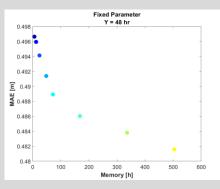


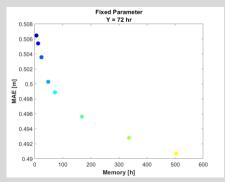


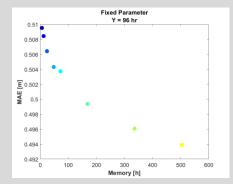


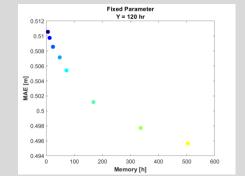


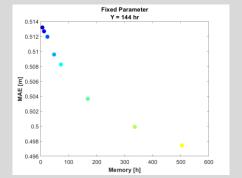


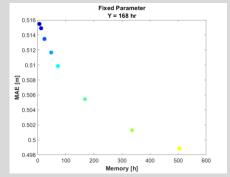






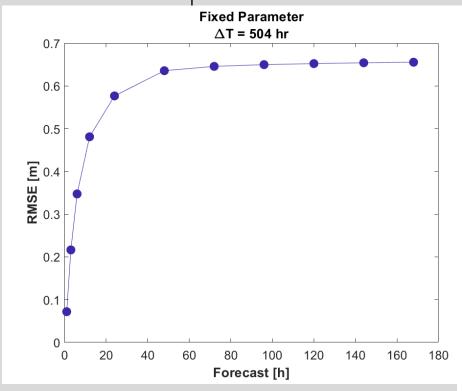






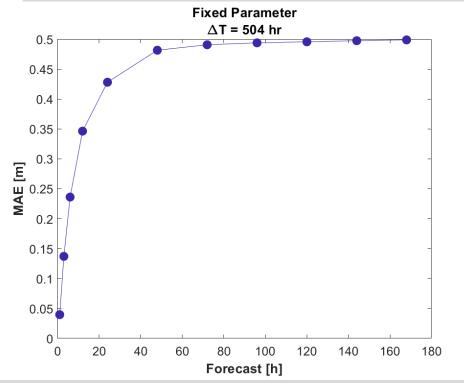
Università di Genova

DICCA DIPARTIMENTO DI INGEGNERIA CIVILE, CHIMICA E AMBIENTALE



Results

Best Performance: $\Delta T = 504hr$



Conclusions

- We report the RMSE and MAE trend for each value of forecast horizon analysed
- A way to see the best results obtained is selecting the minimum value of the error as the window increases
- The best result obtained is for: $\Delta T = 504 \text{ hr}$

... And Then...

- Multivariate linear regression: including other features of the wave field
- Explore Non-Linear Models

