

with a chance of steaming bombs Modelling Steaming Surtseyan Ejecta

Mark McGuinness Emma Greenbank Ian Schipper Andrew Fowler

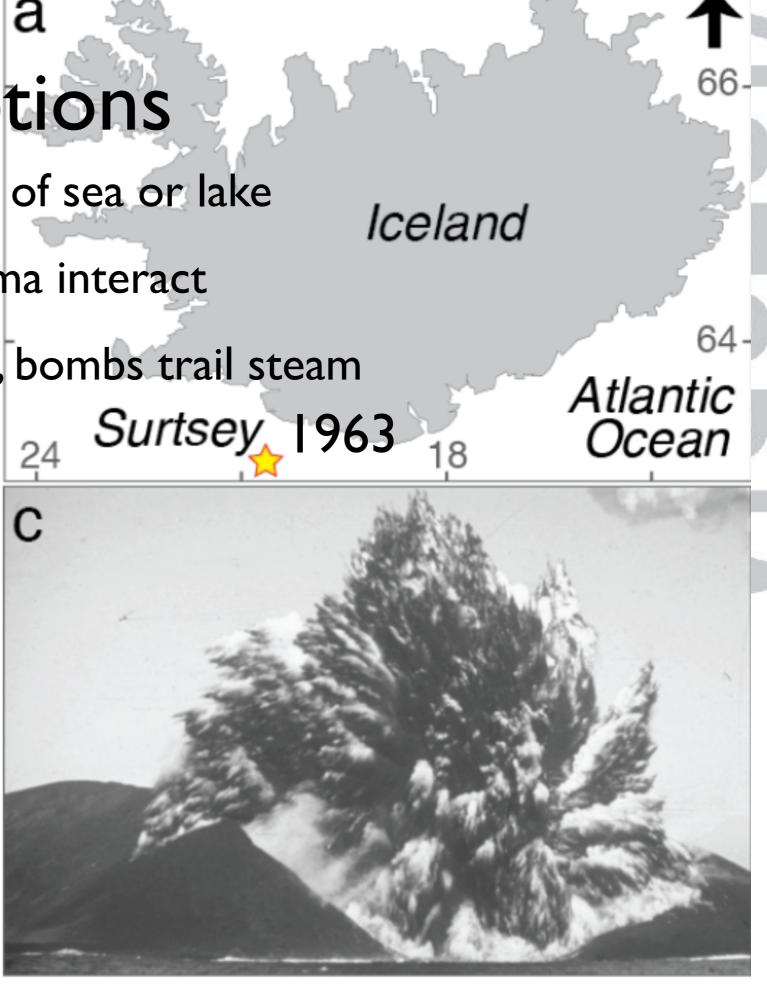
Victoria UNIVERSITY OF WELLINGTON Te Whare Wänanga o te Ūpoko o te Ika a Māui

EGU 2020

CAPITAL CITY UNIVERSITY

Surtseyan Eruptions

- underwater near surface of sea or lake
- water and vesicular magma interact
- lots of steam, cock's tails, bombs trail steam
- relatively silent
- re-entry of slurry mix



Surtseyan Eruptions

- underwater near surface of sea or lake
- water and vesicular magma interact
- lots of steam, cock's tails, bombs trail steam

а

24

С

- relatively silent
- re-entry of slurry mix

Magma-water interactions in subaq volcanism

Surtsey 963

Iceland

18

64

Atlantic

Ocean

Bull Volcanol (1986) 48: 275-289

Peter Kokelaar

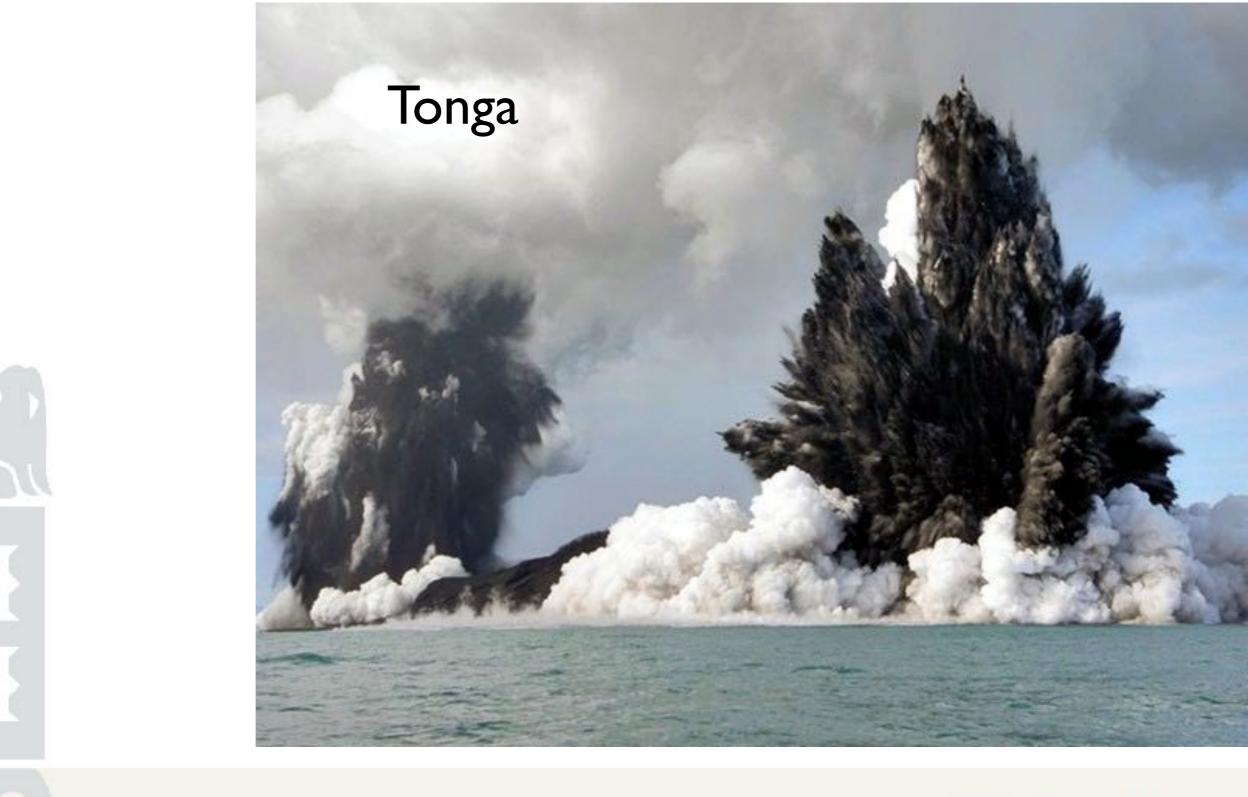
Emergent volcanoes are characterized by distinctive steamexplosive activity that results primarily from a bulk interaction between rapidly ascending magma and a highly mobile slurry of clastic material, water, and steam. The water gets into the vent by flooding across or through the top of

- relatively silent
- re-entry of slurry mix

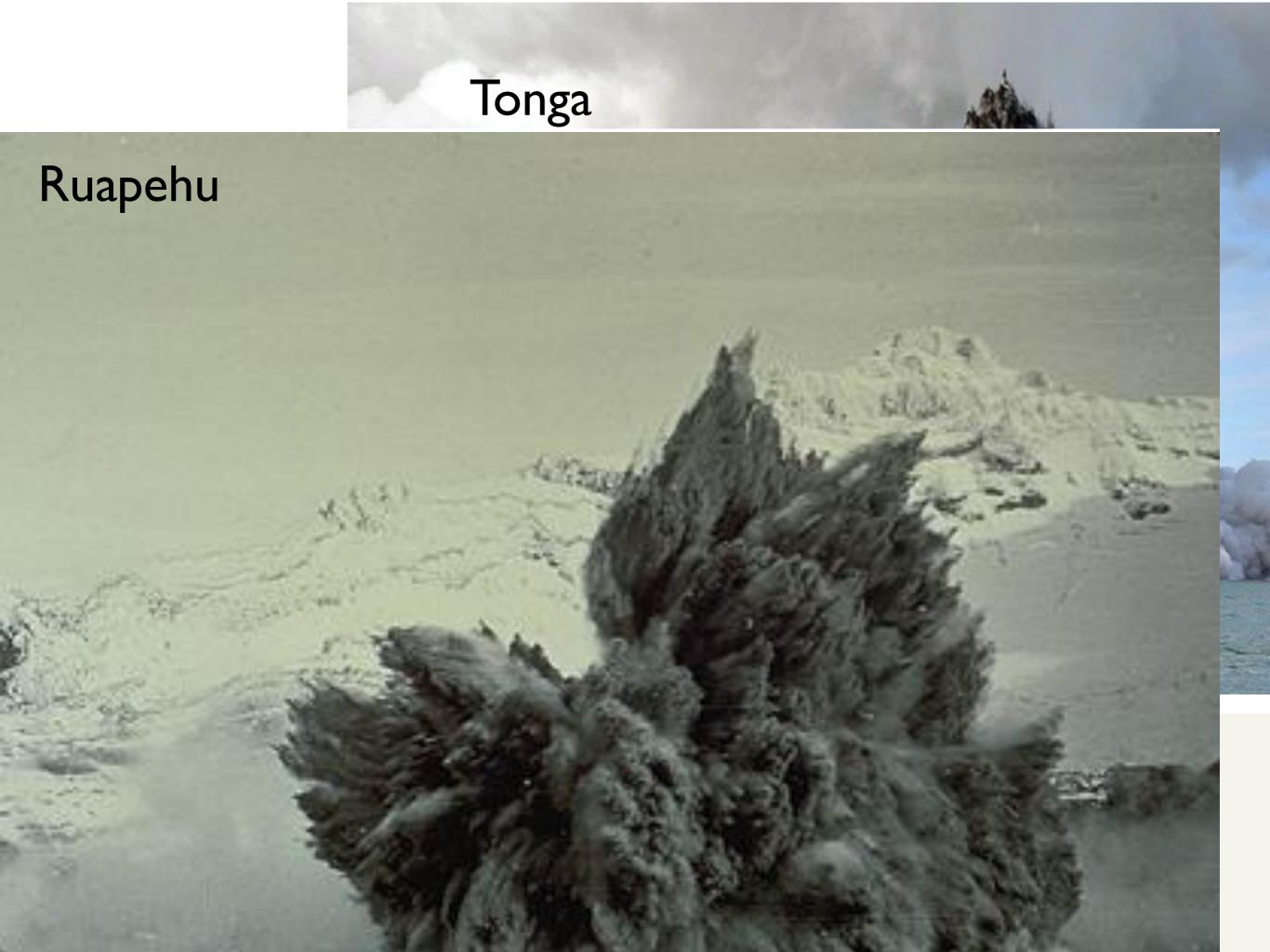
Magma-water interactions in subaq volcanism

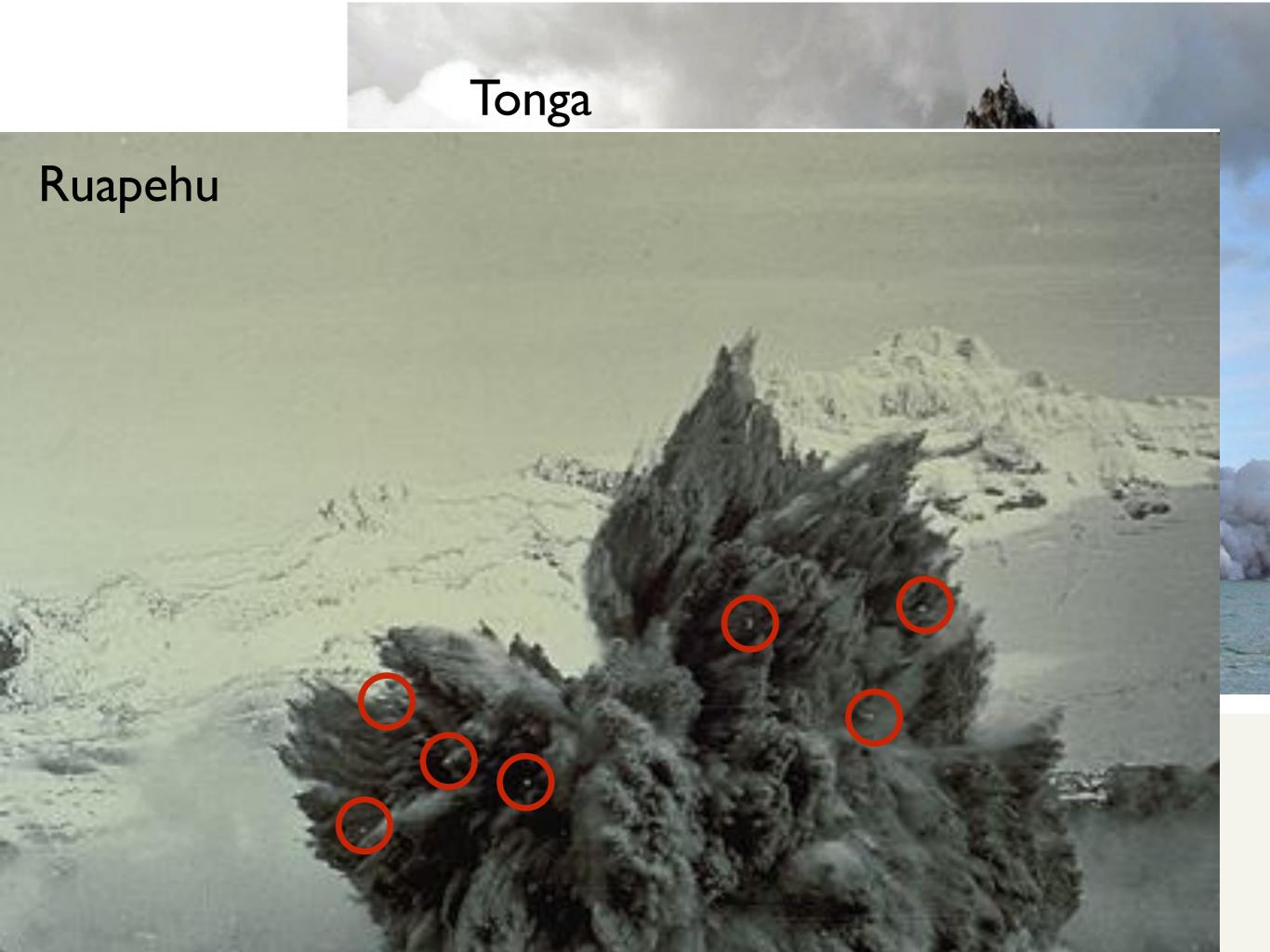
Bull Volcanol (1986) 48: 275-289

Peter Kokelaar



CAPITAL CITY UNIVERSITY

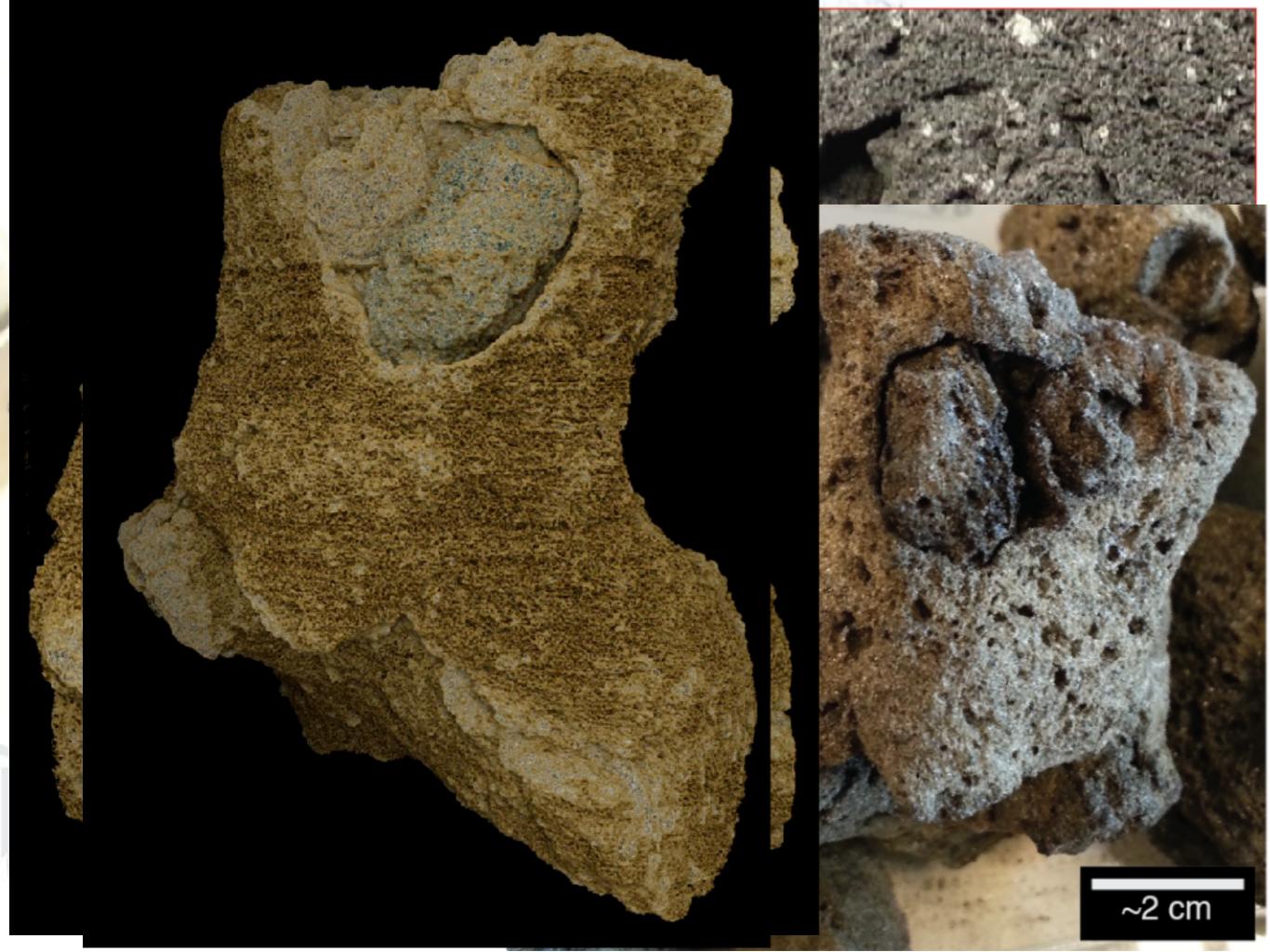


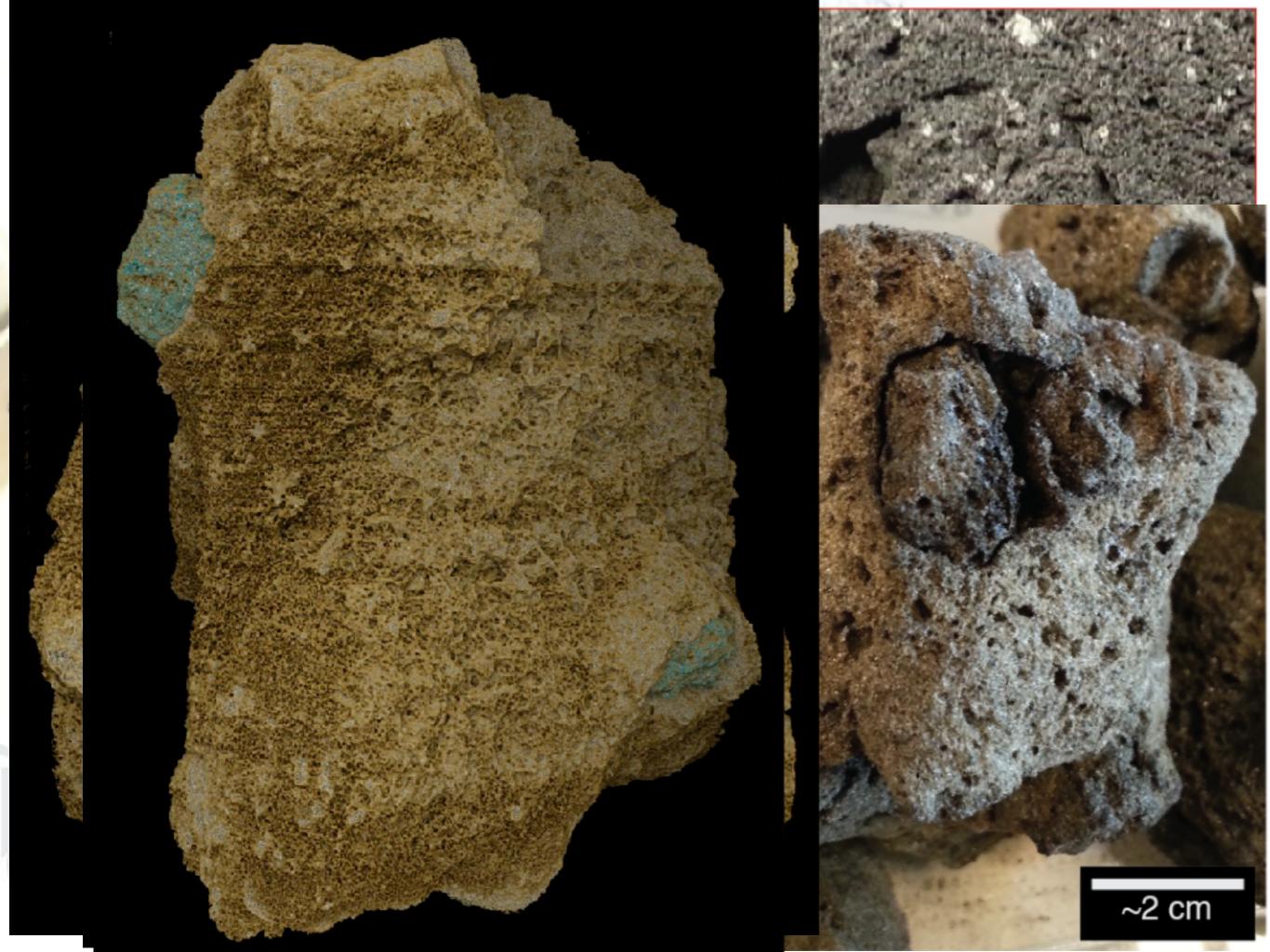


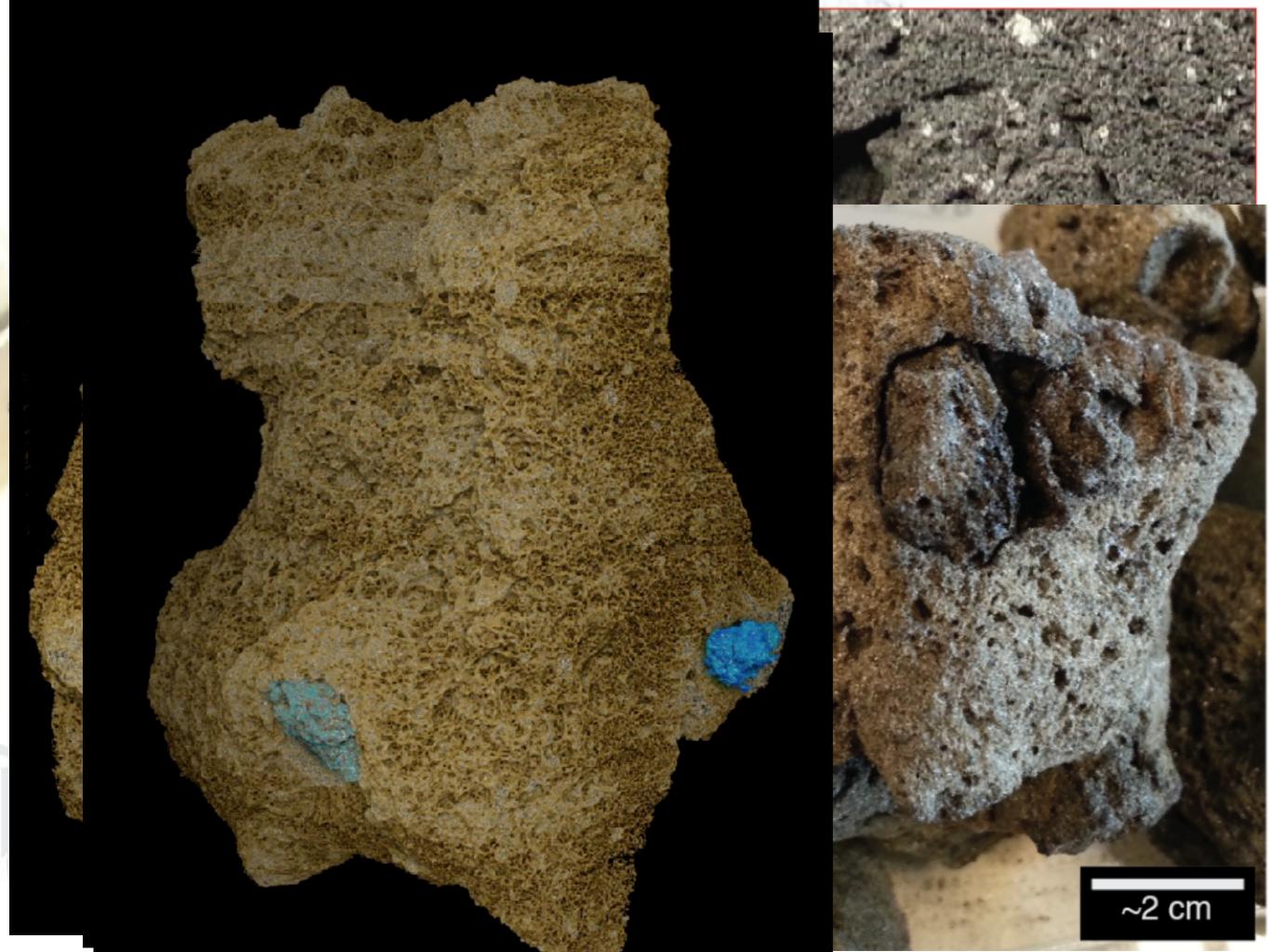
Bomb
Jolnír satellite vent of Surtsey
Synchrotron X-ray tomography
Imaging and Medical Beamline (IMBL)
Australian Synchrotron, Melbourne.
Entrained clasts rendered blue
Void space around entrained clasts

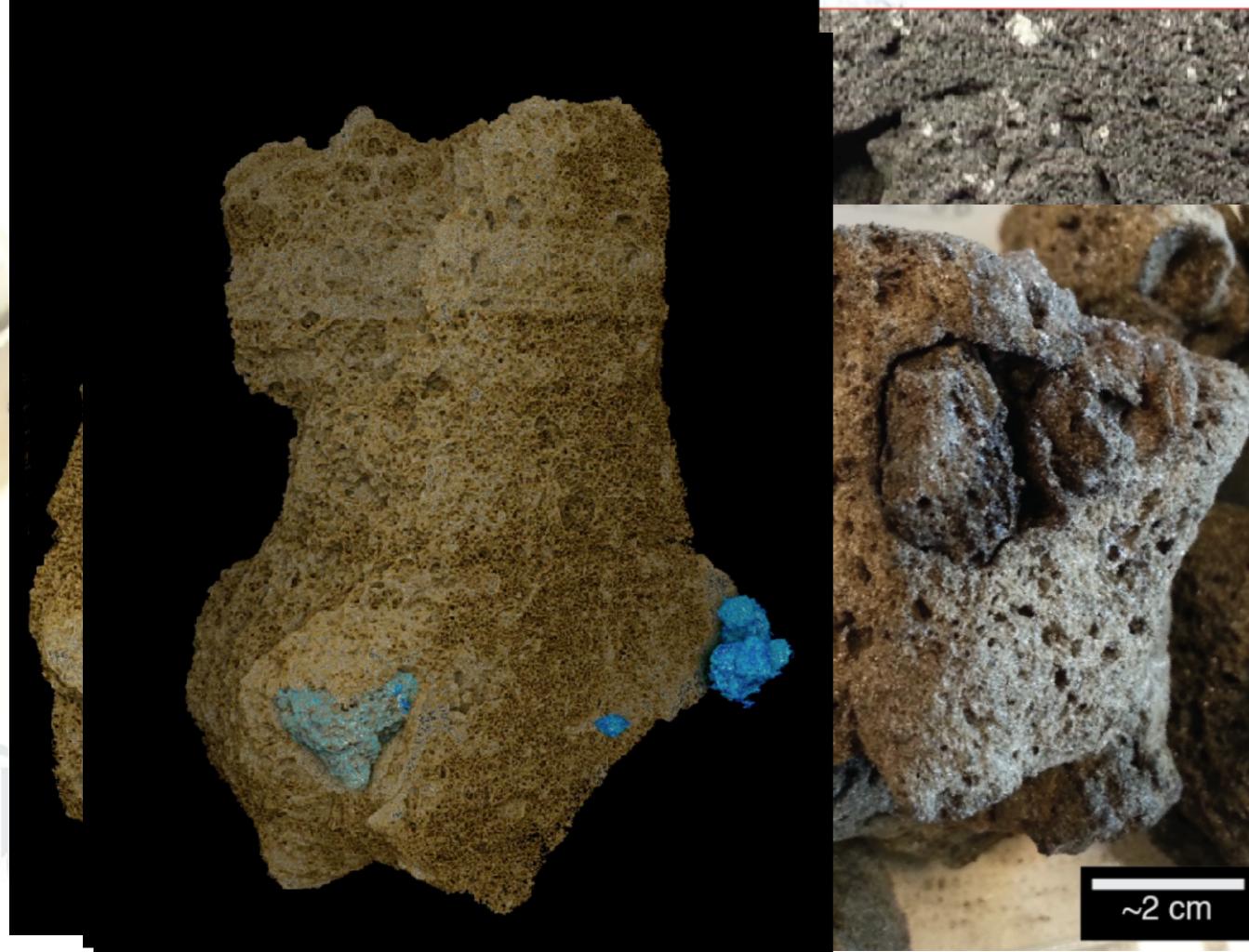
~2 cm

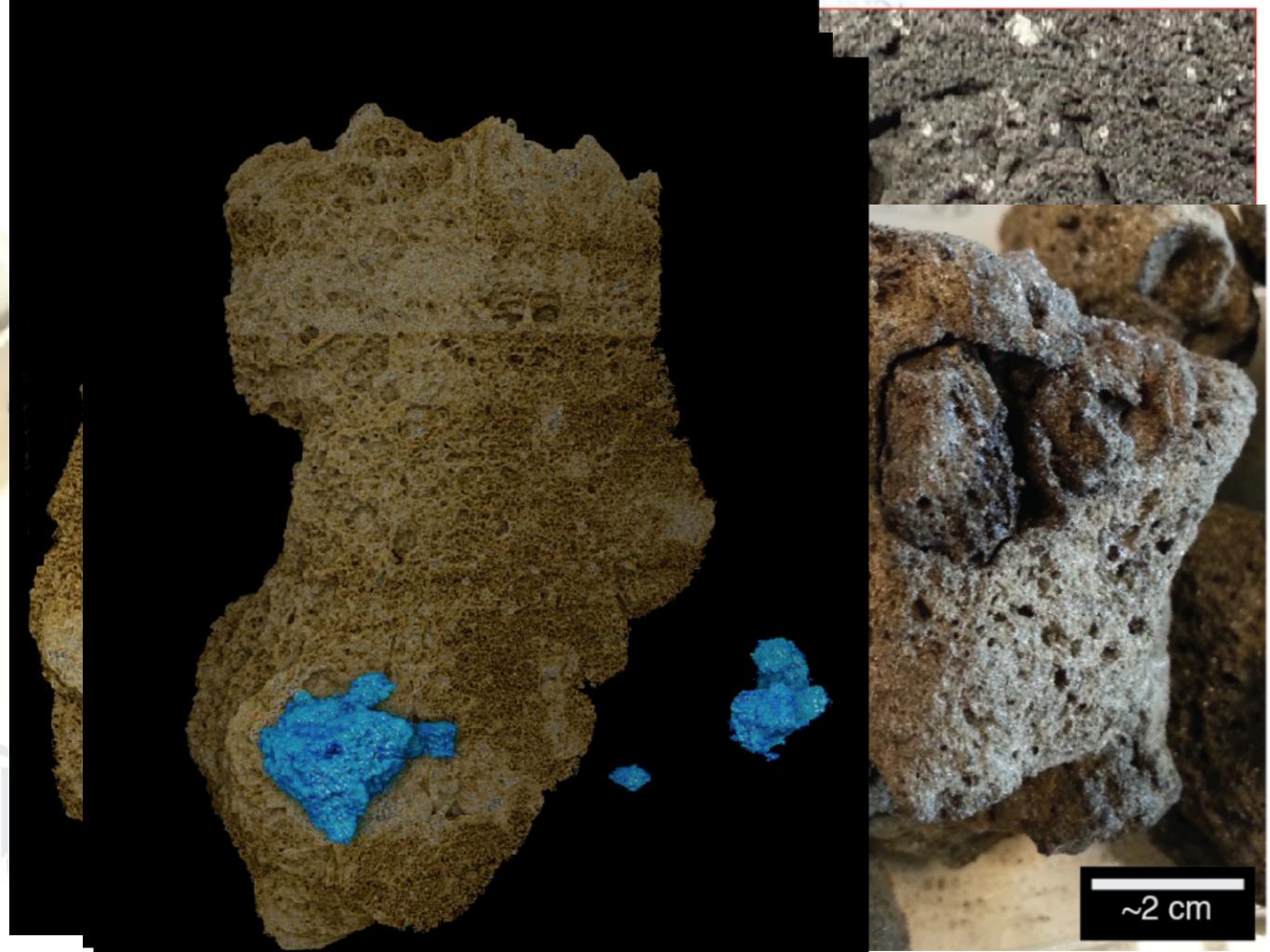
Bomb
Jolnír satellite vent of Surtsey
Synchrotron X-ray tomography
Imaging and Medical Beamline (IMBL)
Australian Synchrotron, Melbourne.
Entrained clasts rendered blue
Void space around entrained clasts

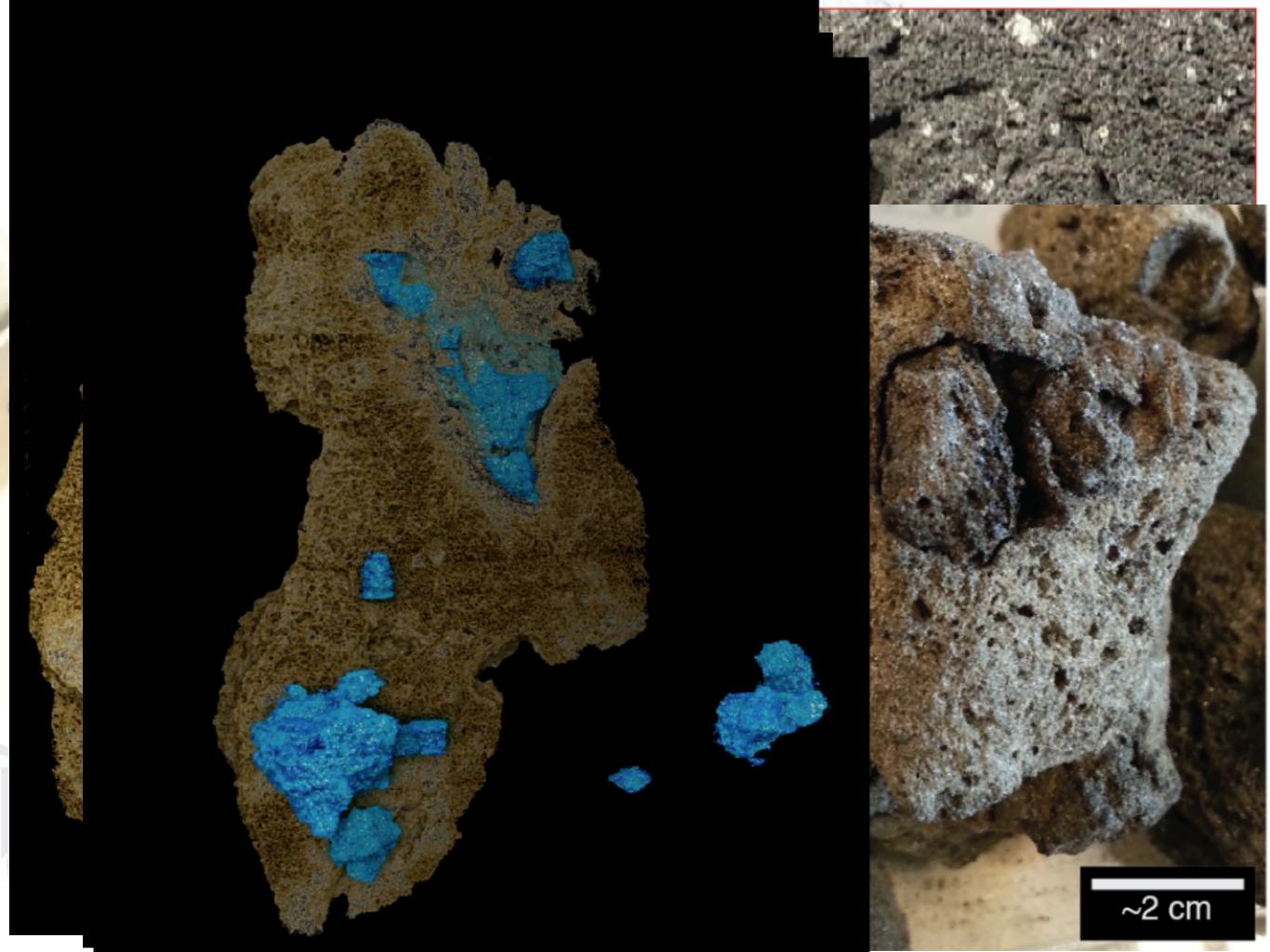












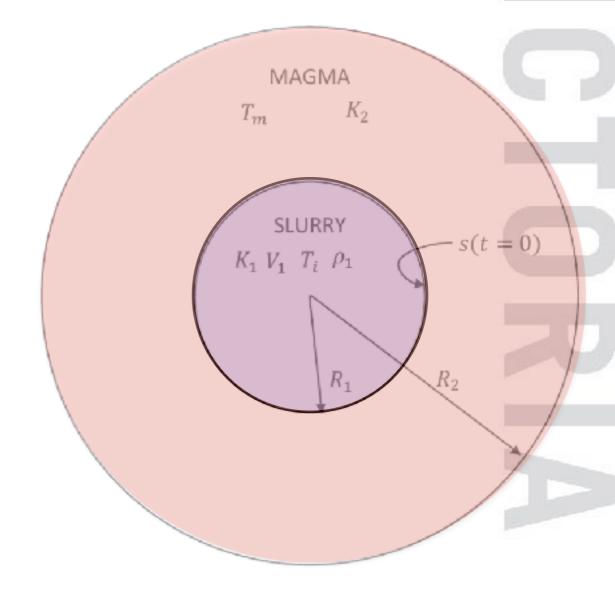
Bomb

- Jolnír satellite vent of Surtsey
- Synchrotron X-ray tomography
- Imaging and Medical Beamline (IMBL)
- Australian Synchrotron, Melbourne.
- Entrained clasts rendered blue
- Void space around entrained clasts

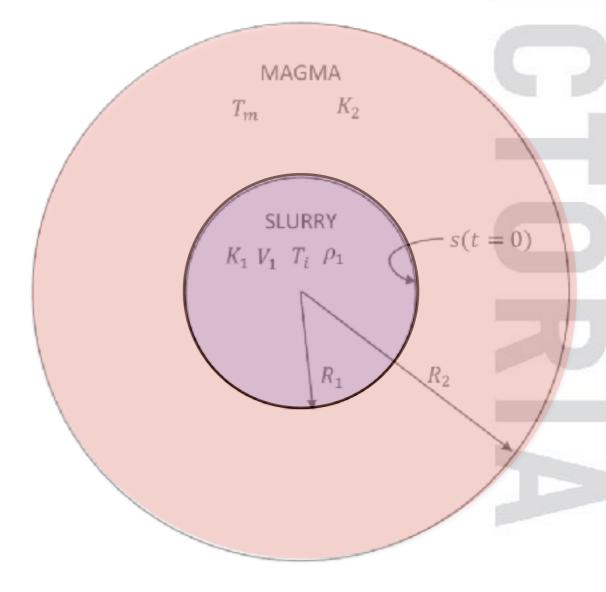
~2 cm

Conceptual model:

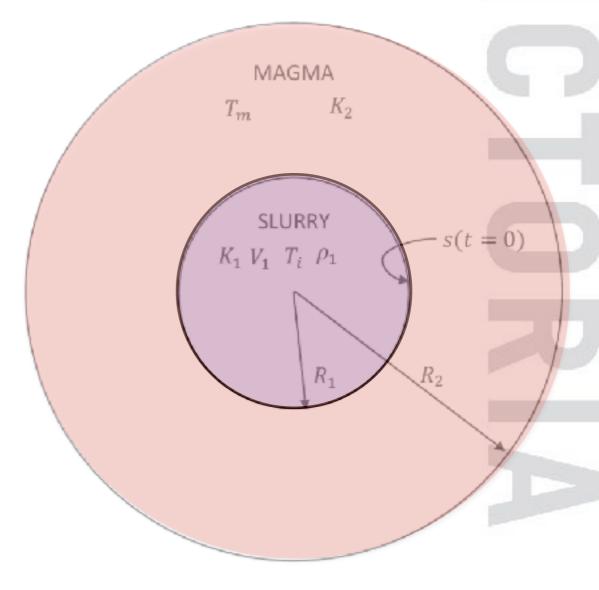
spherical ejecta



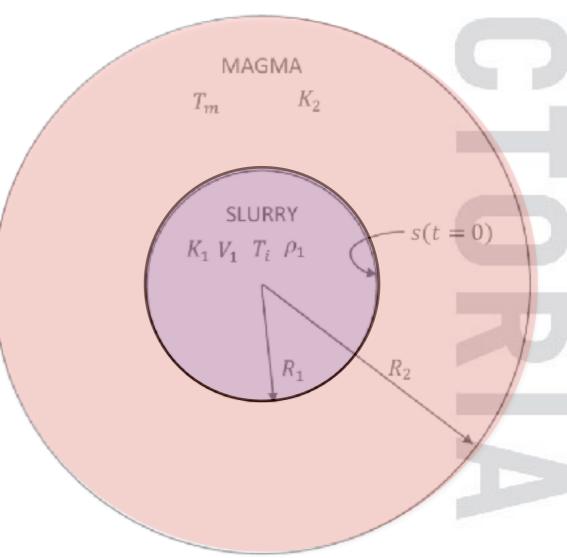
- spherical ejecta
- viscous bubbly basalt



- spherical ejecta
- viscous bubbly basalt
- small Reynolds number



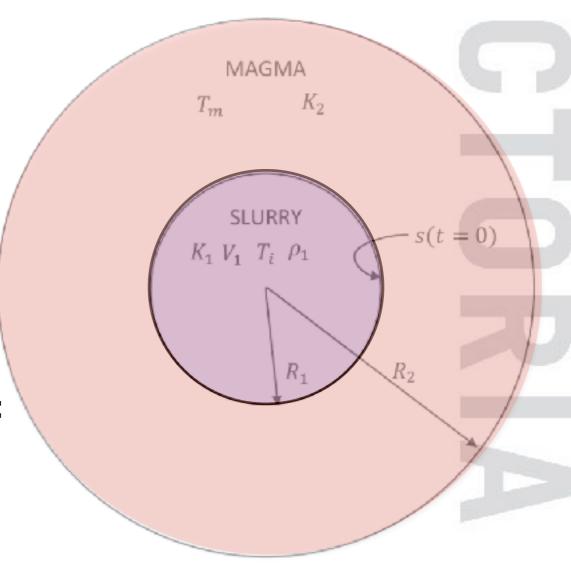
- spherical ejecta
- viscous bubbly basalt
- small Reynolds number
- magma & slurry inclusion = a solid porous medium



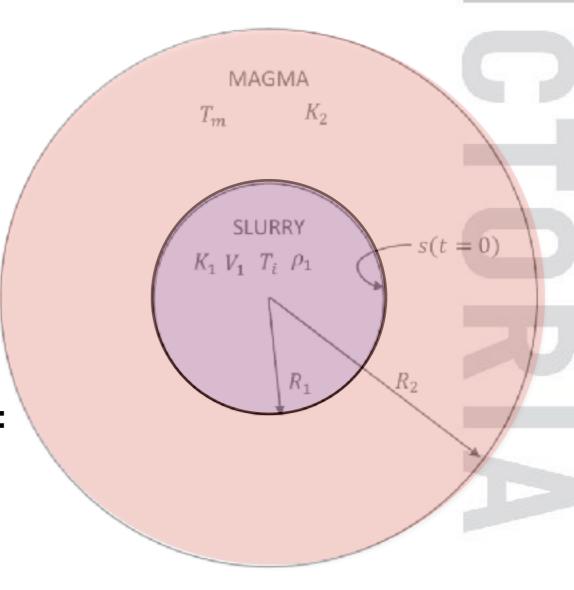
Conceptual model:

- spherical ejecta
- viscous bubbly basalt
- small Reynolds number
- magma & slurry inclusion = a solid porous medium

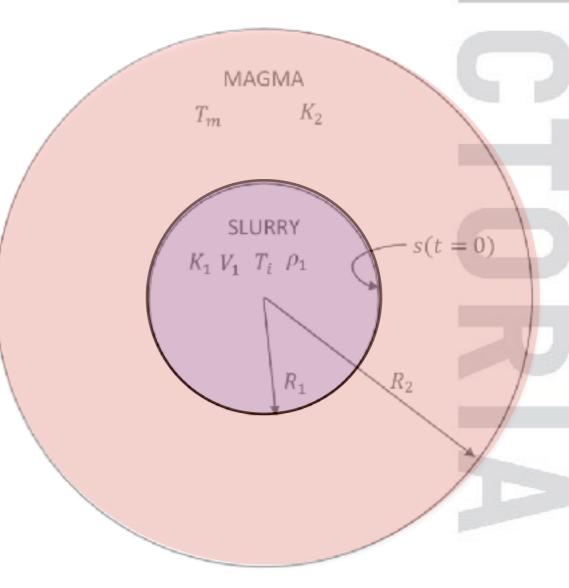
porosity ~ 0.35 - 0.8



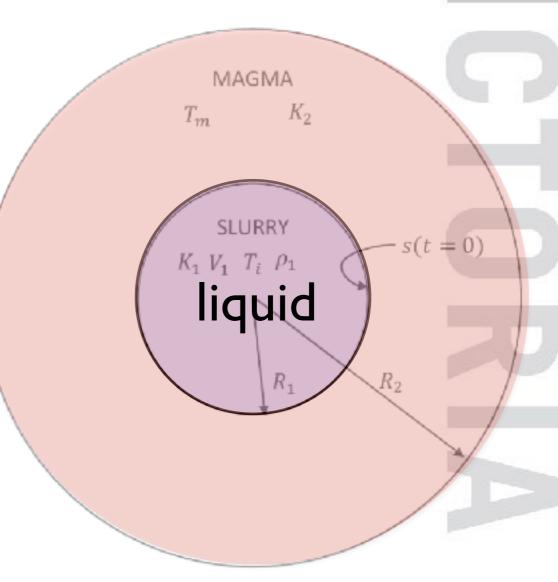
- spherical ejecta
- viscous bubbly basalt
- small Reynolds number
- magma & slurry inclusion = a solid porous medium
- porosity ~ 0.35 0.8
 - with a cold saturated core



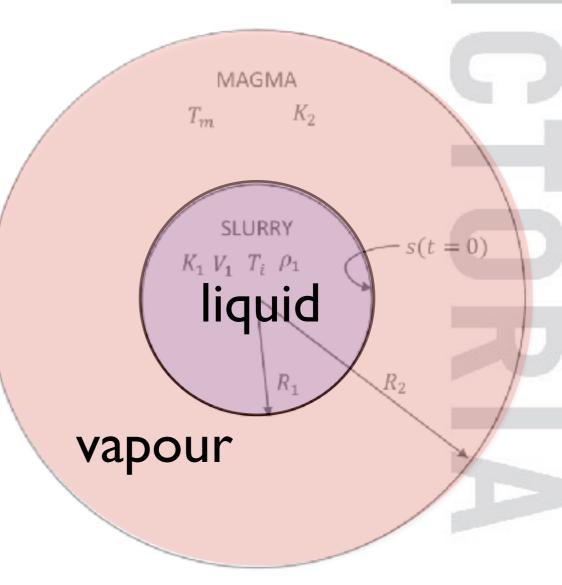
- spherical ejecta
- viscous bubbly basalt
- small Reynolds number
- magma & slurry inclusion = a solid porous medium
- porosity ~ 0.35 0.8
- with a cold saturated core
- hot surrounding magma
 flashes liquid core to steam



- spherical ejecta
- viscous bubbly basalt
- small Reynolds number
- magma & slurry inclusion = a solid porous medium
- porosity ~ 0.35 0.8
- with a cold saturated core
- hot surrounding magma
 flashes liquid core to steam

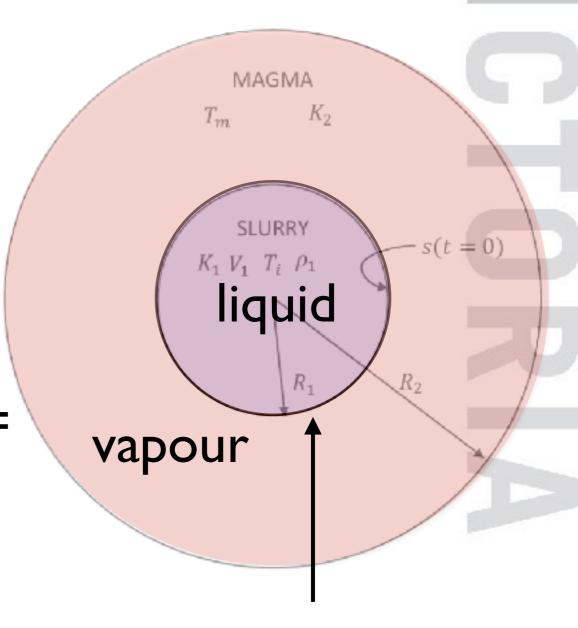


- spherical ejecta
- viscous bubbly basalt
- small Reynolds number
- magma & slurry inclusion = a solid porous medium
- porosity ~ 0.35 0.8
- with a cold saturated core
- hot surrounding magma
 flashes liquid core to steam



Conceptual model:

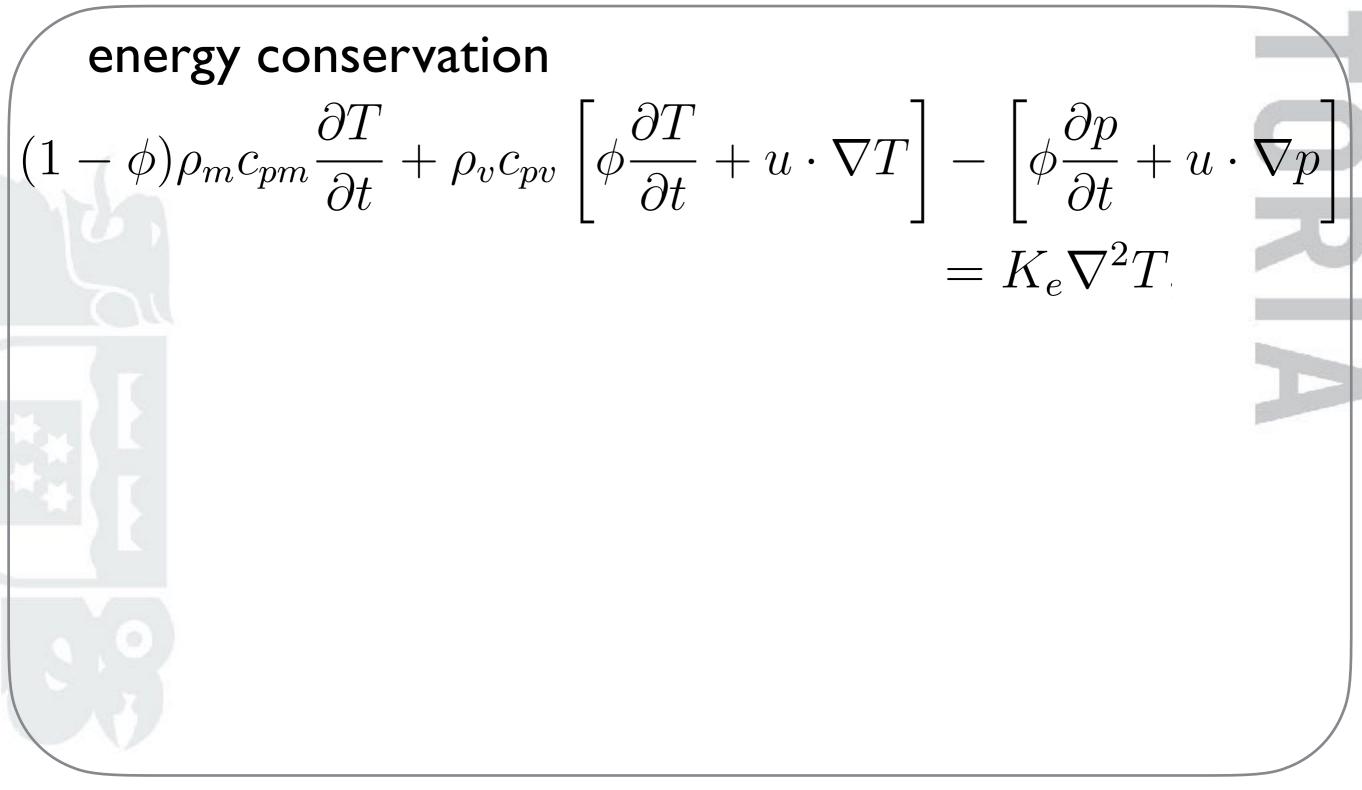
- spherical ejecta
- viscous bubbly basalt
- small Reynolds number
- magma & slurry inclusion = a solid porous medium
- porosity ~ 0.35 0.8
- with a cold saturated core
- hot surrounding magma
 flashes liquid core to steam



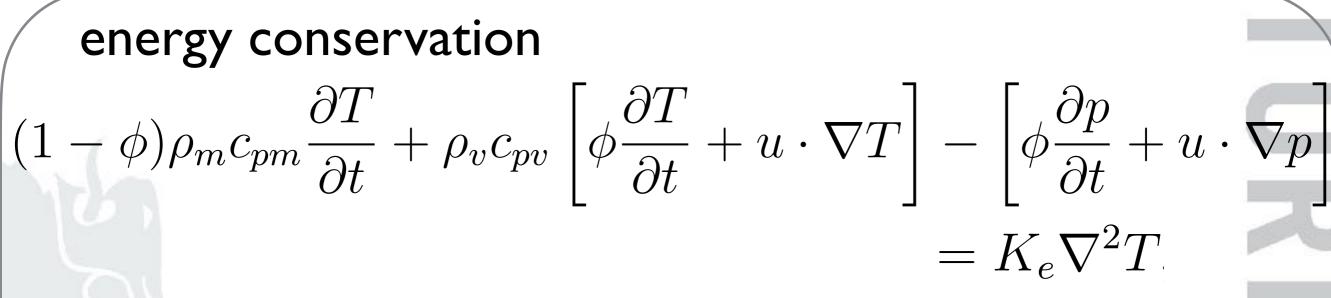
flashing front moves inwards

in vapor region

in vapor region

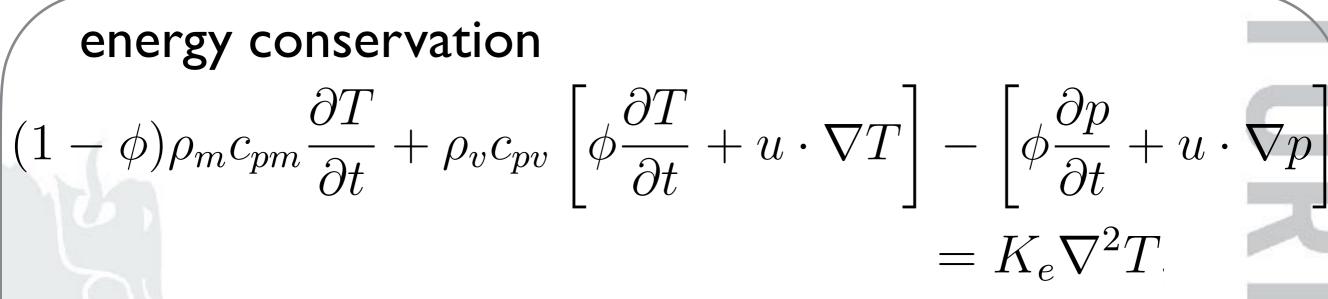


in vapor region



Drew and Wood, Two Phase Flow Fundamentals, 1985

in vapor region

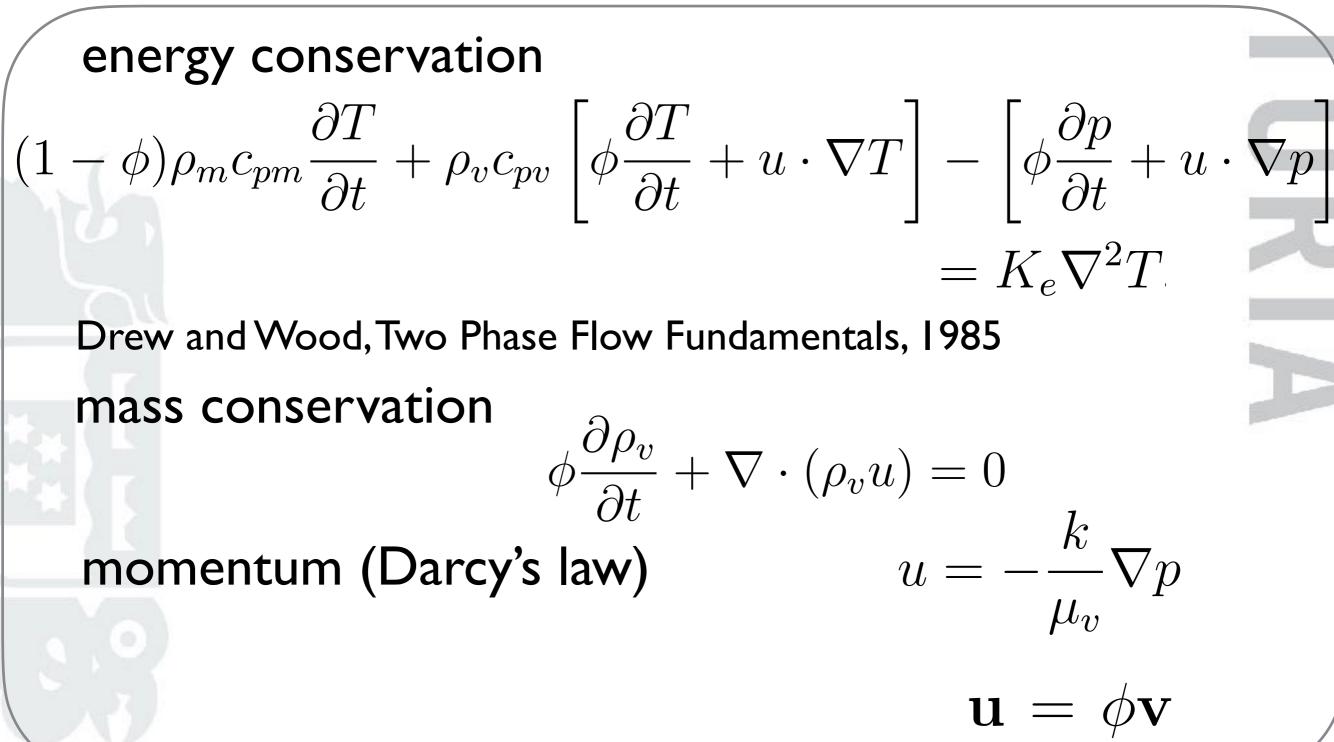


Drew and Wood, Two Phase Flow Fundamentals, 1985

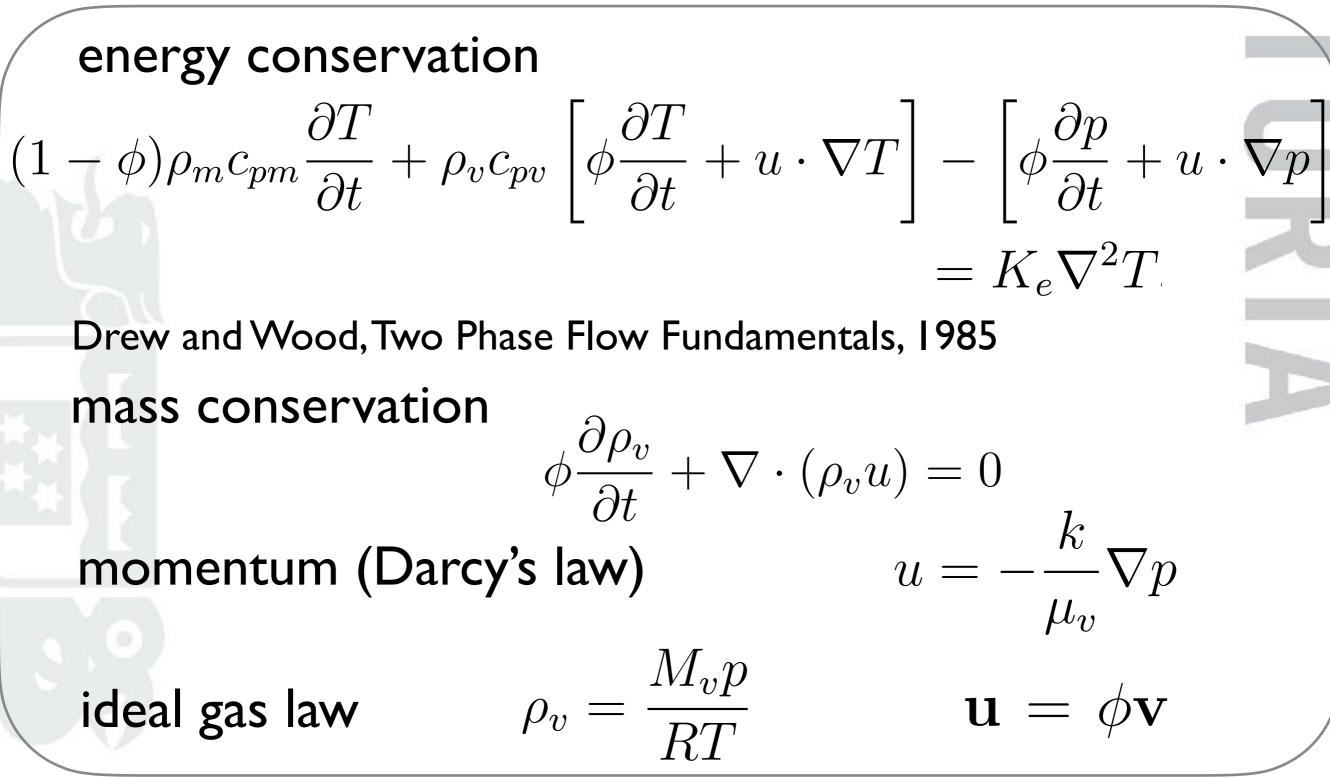
mass conservation

$$\phi \frac{\partial \rho_v}{\partial t} + \nabla \cdot (\rho_v u) = 0$$

in vapor region



in vapor region



in liquid region

symmetry and low compressibility implies no flow

saturated porous medium

$$\begin{split} \phi \frac{\partial \rho_l}{\partial t} + \nabla \cdot (\rho_l \mathbf{u}_l) &= 0 \\ \mathbf{u}_l &= -\frac{k}{\mu_l} \nabla p \\ \varrho' c' \frac{\partial T}{\partial t} + \rho_l c_{pl} \mathbf{u}_l \cdot \nabla T - \phi \beta T \frac{\partial p}{\partial t} - \beta T \mathbf{u}_l \cdot \nabla p \overset{\text{MAGMA}}{\underset{K, V_l, T, \rho}{\mathsf{T}_{\mathsf{n}}} \underset{\mathsf{s}(t=0)}{\mathsf{T}_{\mathsf{n}}} \end{split}$$

at interface

on saturation curve $p_{sv} = p_0 e^{\frac{M_v L}{RT_0} \left[\frac{T_s - T_0}{T_s}\right]}$

transform to a moving frame, integrate mass, energy across flash front:

$$\phi \rho_s h_{sl}(v - \dot{s}) = \phi \rho_l h_{sl}(v_l - \dot{s}) = [K\nabla T]_{-}^{+} + \phi(v - v_l)_{-}^{+}$$

at interface

on saturation curve $p_{sv} = p_0 e^{\frac{M_v L}{RT_0} \left[\frac{T_s - T_0}{T_s}\right]}$

transform to a moving frame, integrate mass, energy across flash front:

$$\phi \rho_s h_{sl}(v - \dot{s}) = \phi \rho_l h_{sl}(v_l - \dot{s}) = [K\nabla T]_-^+ + \phi(v - v_l)_{ll}$$

boundary and initial conditions

$$p(R_2) = p_a$$
, $\frac{\partial p}{\partial r} = 0$ at $r = 0$
nitial P initial T: hot in magma, at boiling in inclusion

$$\begin{array}{lll} \displaystyle \frac{\partial T}{\partial t} &= \frac{\epsilon_3}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) , \quad r < s(t) , \\ \displaystyle \dot{s} &= \epsilon_4 \rho_s \frac{\partial p}{\partial r} = -\frac{1}{\mathrm{St}} \left[\frac{\partial T}{\partial r} \right]_-^+ , \quad r = s(t) , \\ \displaystyle p &= \exp \left[H \left(\frac{T - T_0}{T} \right) \right] , \quad r = s(t) \\ \displaystyle \frac{\partial T}{\partial t} &= \frac{\delta_5}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) , \quad r > s(t) \\ \displaystyle p &= \rho_s T , \quad r > s(t) , \\ \displaystyle \mathbf{Nondimensionalise} \\ \displaystyle \frac{\partial \rho_s}{\partial t} &= \frac{\epsilon_5}{r^2} \frac{\partial}{\partial r} \left(r^2 \rho_s \frac{\partial p}{\partial r} \right) , \quad r > s(t) , \\ T &= T_0 , \quad r = 1 ; \quad p = 1 , \quad r = 1 ; \quad \frac{\partial T}{\partial r} = 0 , \quad r = 0 ; \\ \mathrm{initial \ conditions} \quad T = T_0 , \quad r < s(0) ; \quad T = 1 , \quad r > s(0) ; \\ p &= 1 ; \quad s(0) = R_1/R_2 . \end{array}$$

$$\begin{array}{l} \frac{\partial T}{\partial t} = \frac{\epsilon_3}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) , \quad r < s(t) ,\\ \dot{s} = \epsilon_4 \rho_s \frac{\partial p}{\partial r} = -\frac{1}{\mathrm{St}} \left[\frac{\partial T}{\partial r} \right]_-^+ , \quad r = s(t) ,\\ p = \exp \left[H \left(\frac{T - T_0}{T} \right) \right] , \quad r = s(t) \\ \frac{\partial T}{\partial t} = \frac{\delta_5}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) , \quad r > s(t) \\ p = \rho_s T , \quad r > s(t) , \\ \mathbf{Nondimensionalise} \\ \frac{\partial \rho_s}{\partial t} = \frac{\epsilon_5}{r^2} \frac{\partial}{\partial r} \left(r^2 \rho_s \frac{\partial p}{\partial r} \right) , \quad r > s(t) ,\\ T = T_0 , \quad r = 1 ; \quad p = 1 , \quad r = 1 ; \quad \frac{\partial T}{\partial r} = 0 , \quad r = 0 ;\\ \mathrm{initial \ conditions} \quad T = T_0 , \quad r < s(0) ; \quad T = 1 , \quad r > s(0) ;\\ p = 1 ; \quad s(0) = R_1/R_2 . \end{array}$$

$$\begin{array}{l} \frac{\partial T}{\partial t} \overset{\mathbf{0.002}}{=} \frac{\epsilon_3}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) , \quad r < s(t) ,\\ \dot{s} &= \epsilon_4 \rho_s \frac{\partial p}{\partial r} = -\frac{1}{\mathrm{St}} \left[\frac{\partial T}{\partial r} \right]_-^+ , \quad r = s(t) ,\\ p &= \exp \left[H \left(\frac{T - T_0}{T} \right) \right] , \quad r = s(t) \\ \begin{array}{l} 0.0025 \\ \frac{\partial T}{\partial t} &= \frac{\delta_5}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) , \quad r > s(t) \\ p &= \rho_s T , \quad r > s(t) , \\ \end{array} \right. \begin{array}{l} \mathbf{Nondimensionalise} \\ \frac{\partial \rho_s}{\partial t} &= \frac{\epsilon_5}{r^2} \frac{\partial}{\partial r} \left(r^2 \rho_s \frac{\partial p}{\partial r} \right) , \quad r > s(t) ,\\ T &= T_0 , \quad r = 1 ; \quad p = 1 , \quad r = 1 ; \quad \frac{\partial T}{\partial r} = 0 , \quad r = 0 ; \\ \text{initial conditions} \quad T = T_0 , \quad r < s(0) ; \quad T = 1 , \quad r > s(0) ; \\ p &= 1 ; \quad s(0) = R_1 / R_2 . \end{array}$$

$$\begin{array}{l} \frac{\partial T}{\partial t} \overset{\mathbf{0.002}}{=} \frac{\epsilon_3}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) , \quad r < s(t) ,\\ \dot{s} &= \epsilon_4 \rho_s \frac{\partial p}{\partial r} = -\frac{1}{\mathrm{St}} \left[\frac{\partial T}{\partial r} \right]_-^+ , \quad r = s(t) ,\\ p &= \exp \left[H \left(\frac{T - T_0}{T} \right) \right] , \quad r = s(t) \\ \begin{array}{l} 0.0025 \\ \frac{\partial T}{\partial t} &= \frac{\delta_5}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) , \quad r > s(t) \\ p &= \rho_s T , \quad r > s(t) , \\ \end{array} \right. \begin{array}{l} \mathbf{Nondimensionalise} \\ \frac{\partial \rho_s}{\partial t} &= \frac{\epsilon_5}{r^2} \frac{\partial}{\partial r} \left(r^2 \rho_s \frac{\partial p}{\partial r} \right) , \quad r > s(t) ,\\ T &= T_0 , \quad r = 1 ; \quad p = 1 , \quad r = 1 ; \quad \frac{\partial T}{\partial r} = 0 , \quad r = 0 ; \\ \text{initial conditions} \quad T = T_0 , \quad r < s(0) ; \quad T = 1 , \quad r > s(0) ; \\ p &= 1 ; \quad s(0) = R_1/R_2 . \end{array}$$

• boiling driven by magma temperature gradient

- boiling driven by magma temperature gradient
- initial gradient infinite

- boiling driven by magma temperature gradient
- initial gradient infinite

- boiling driven by magma temperature gradient
- initial gradient infinite
- moving boundary: freeze ______
 with Landau transformations

- boiling driven by magma temperature gradient
- initial gradient infinite

S

 moving boundary: freeze with Landau transformations

 $\xi = \frac{r - s}{1 - \epsilon} \quad \text{in hot magma}$

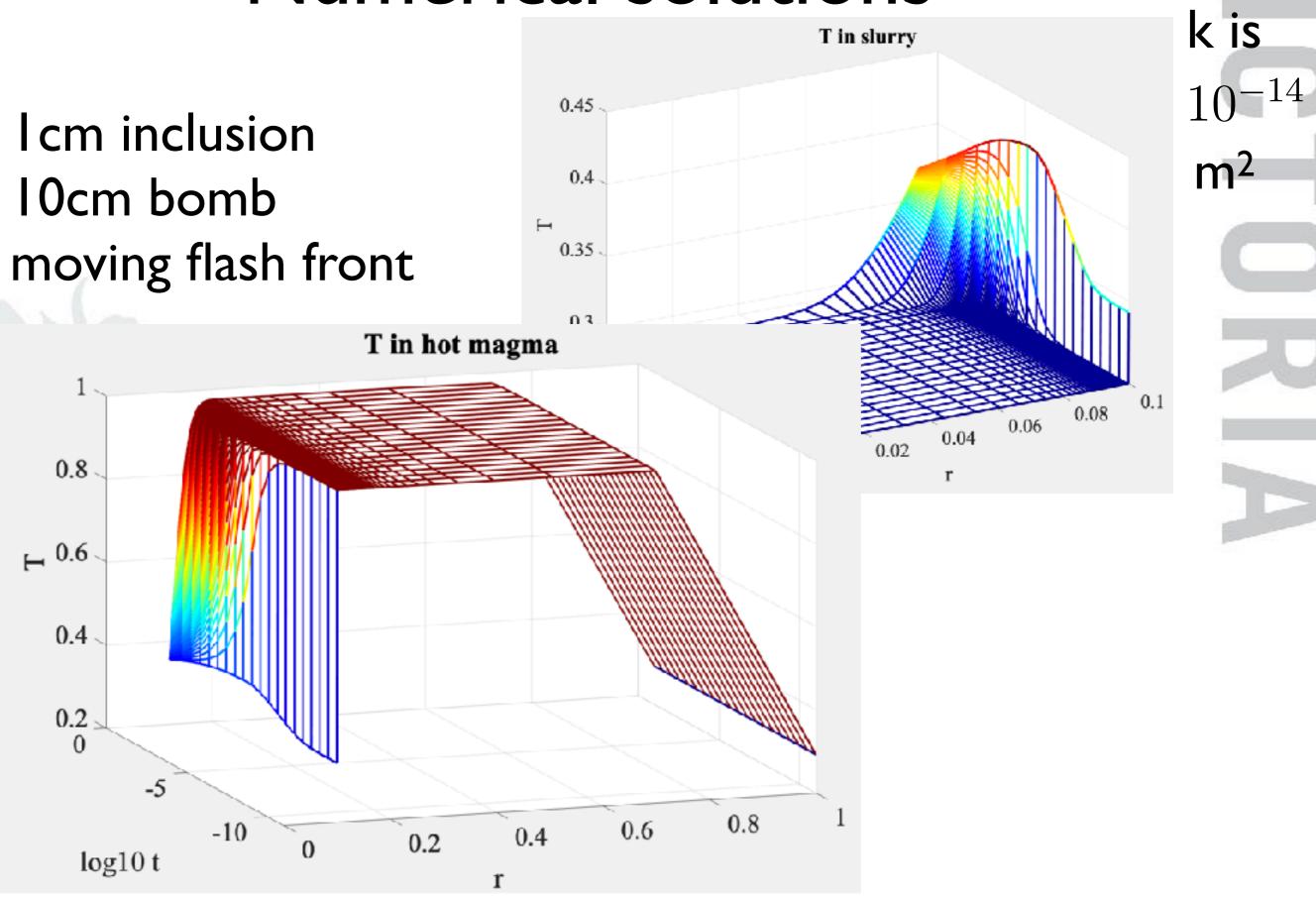
- boiling driven by magma temperature gradient
- initial gradient infinite

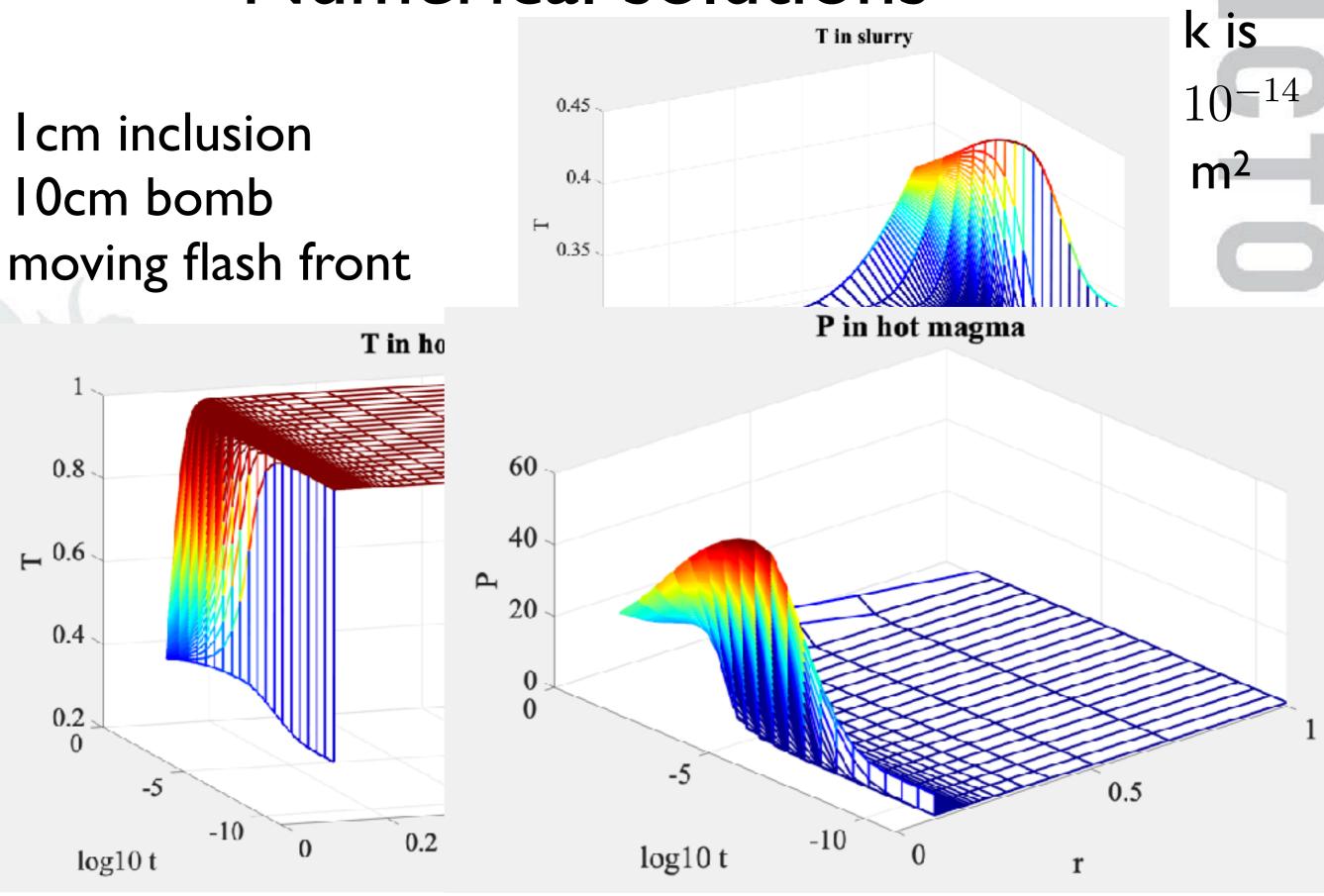
 $= \frac{r}{s} \quad \text{in slurry} \quad \xi = \frac{r-s}{1-s} \quad \text{in hot magma}$

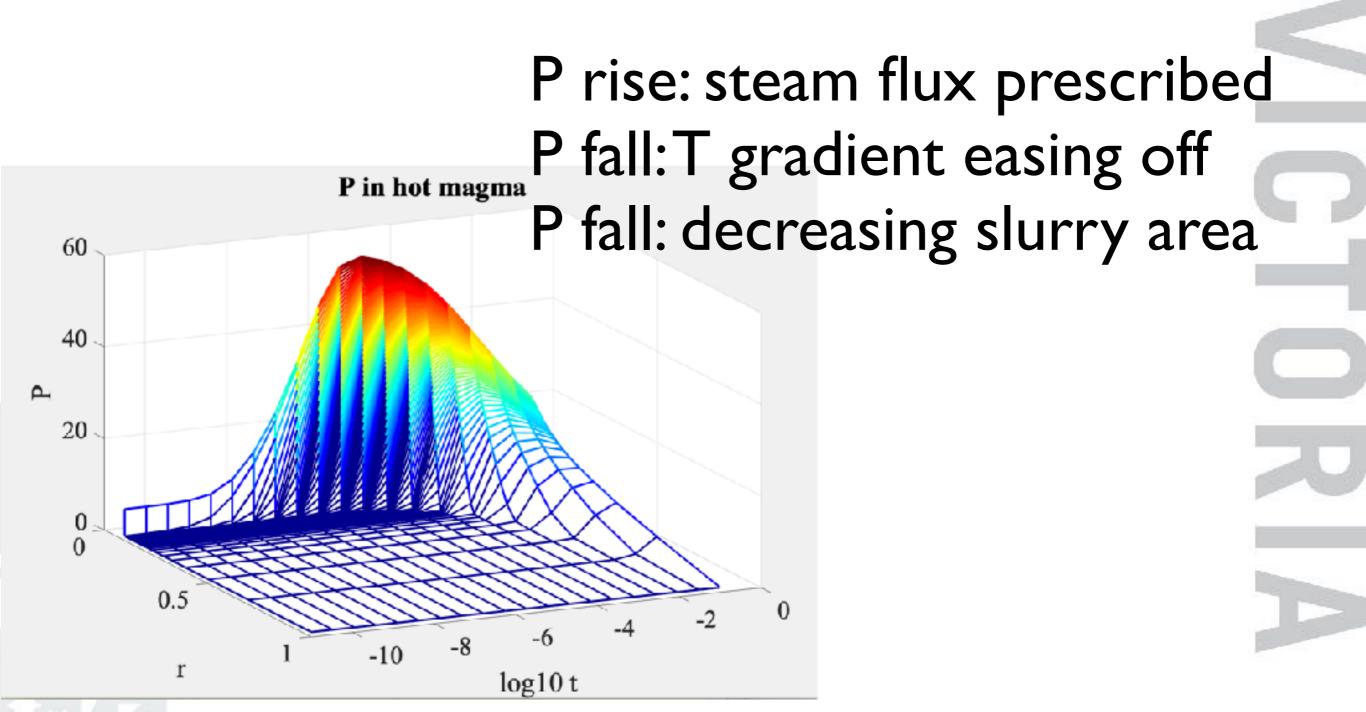
Then use method of lines. Upwind advection terms. Transform to non-uniform mesh, to resolve thermal boundary layer.

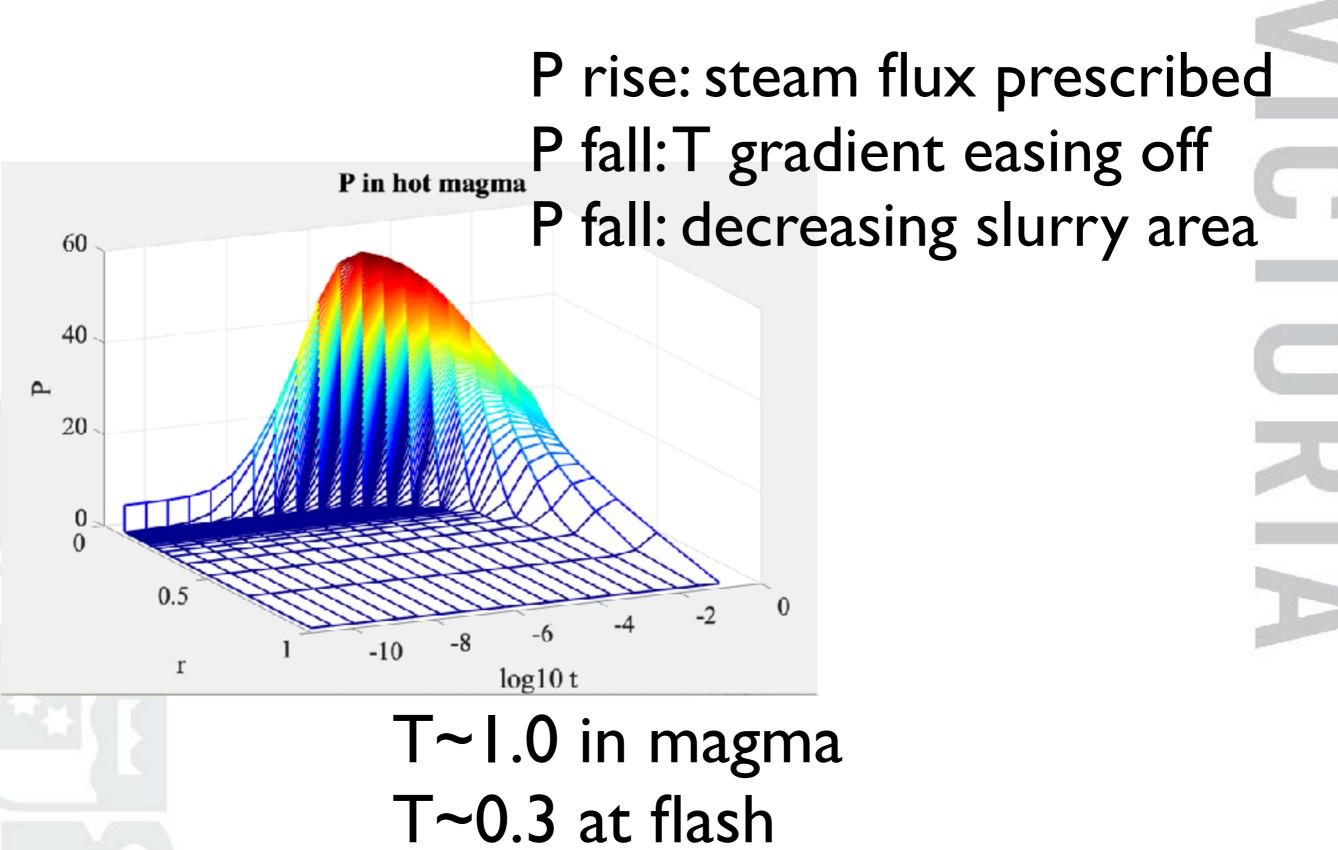
I cm inclusion I 0cm bomb moving flash front



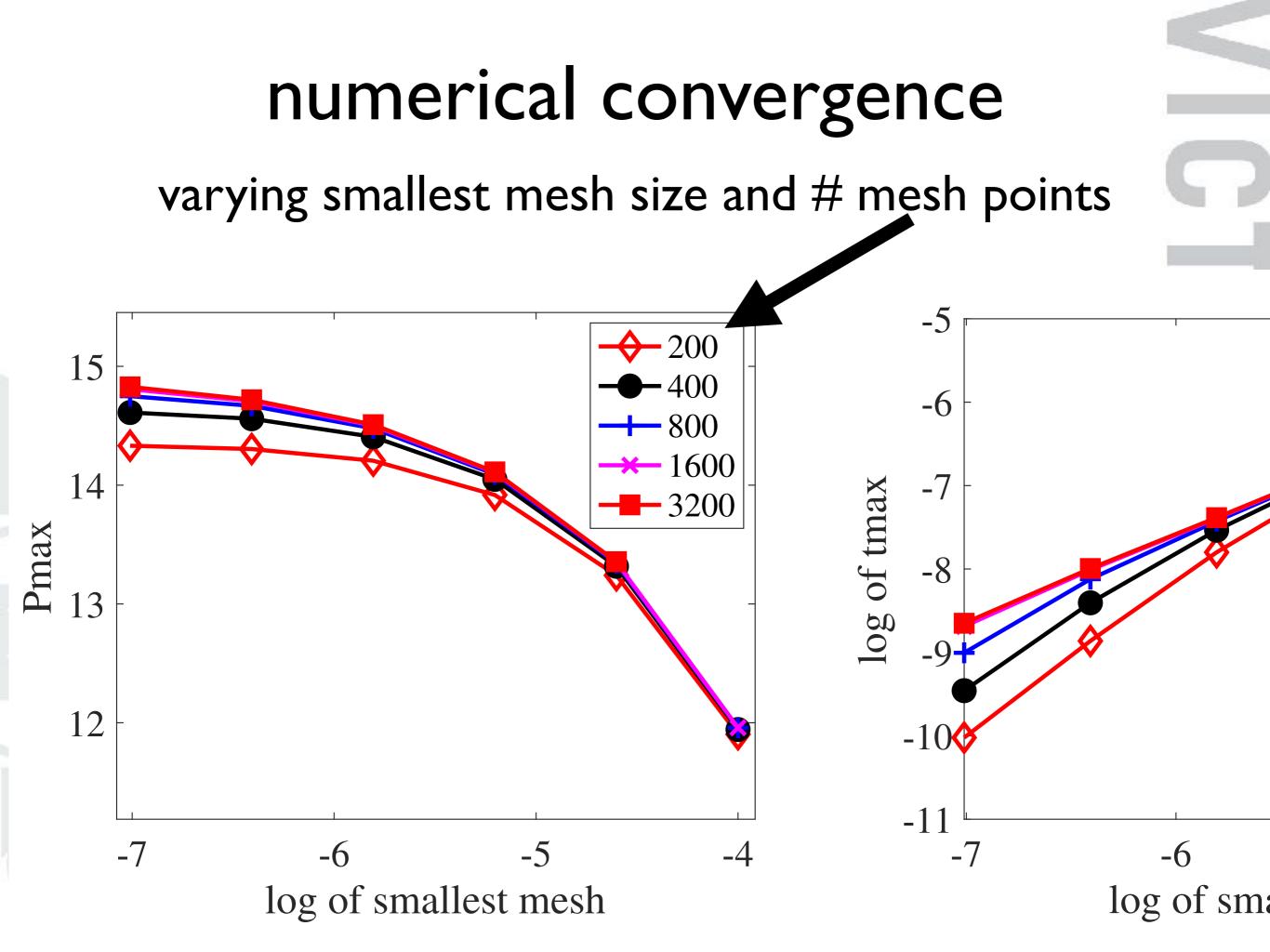


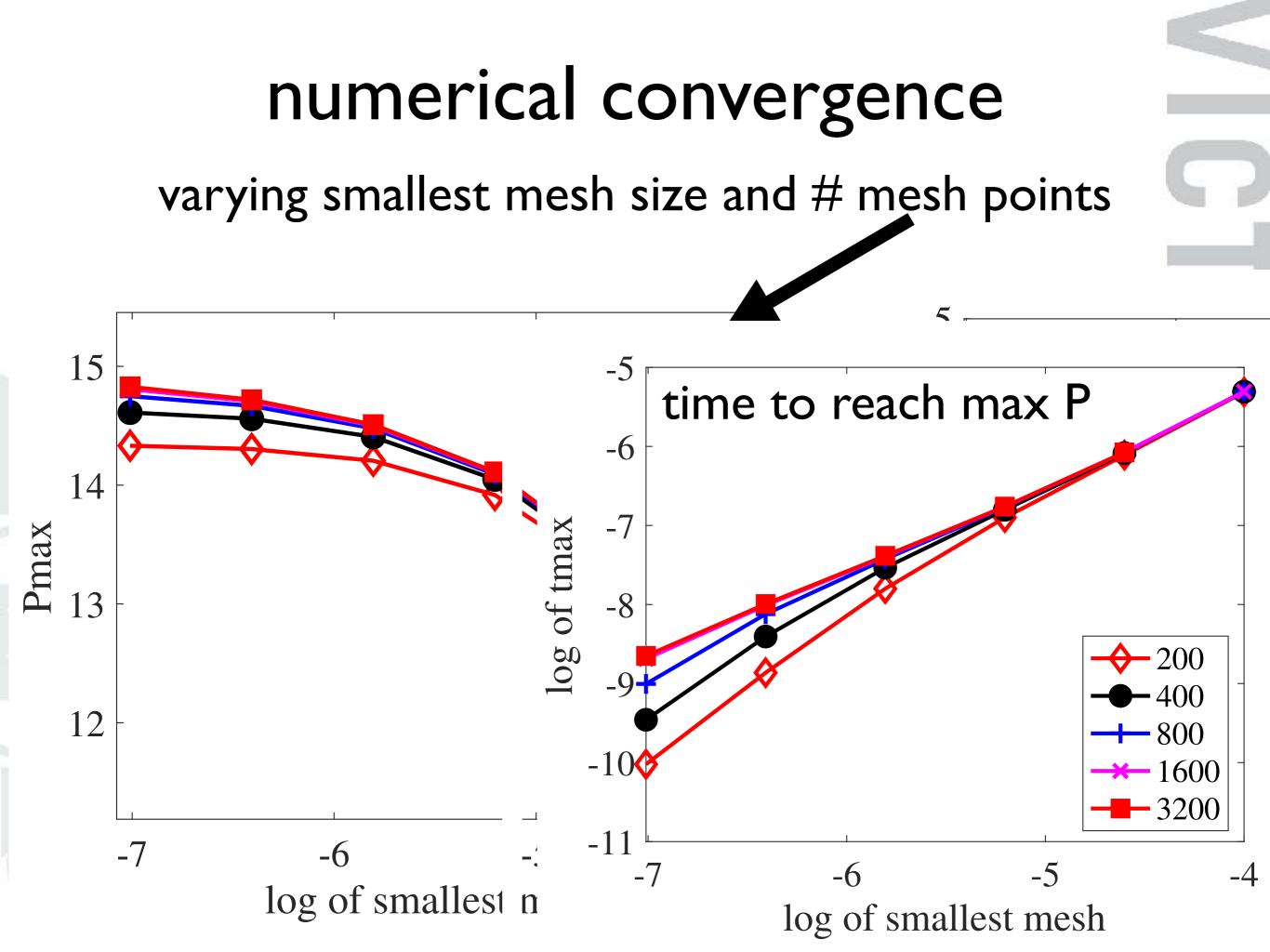


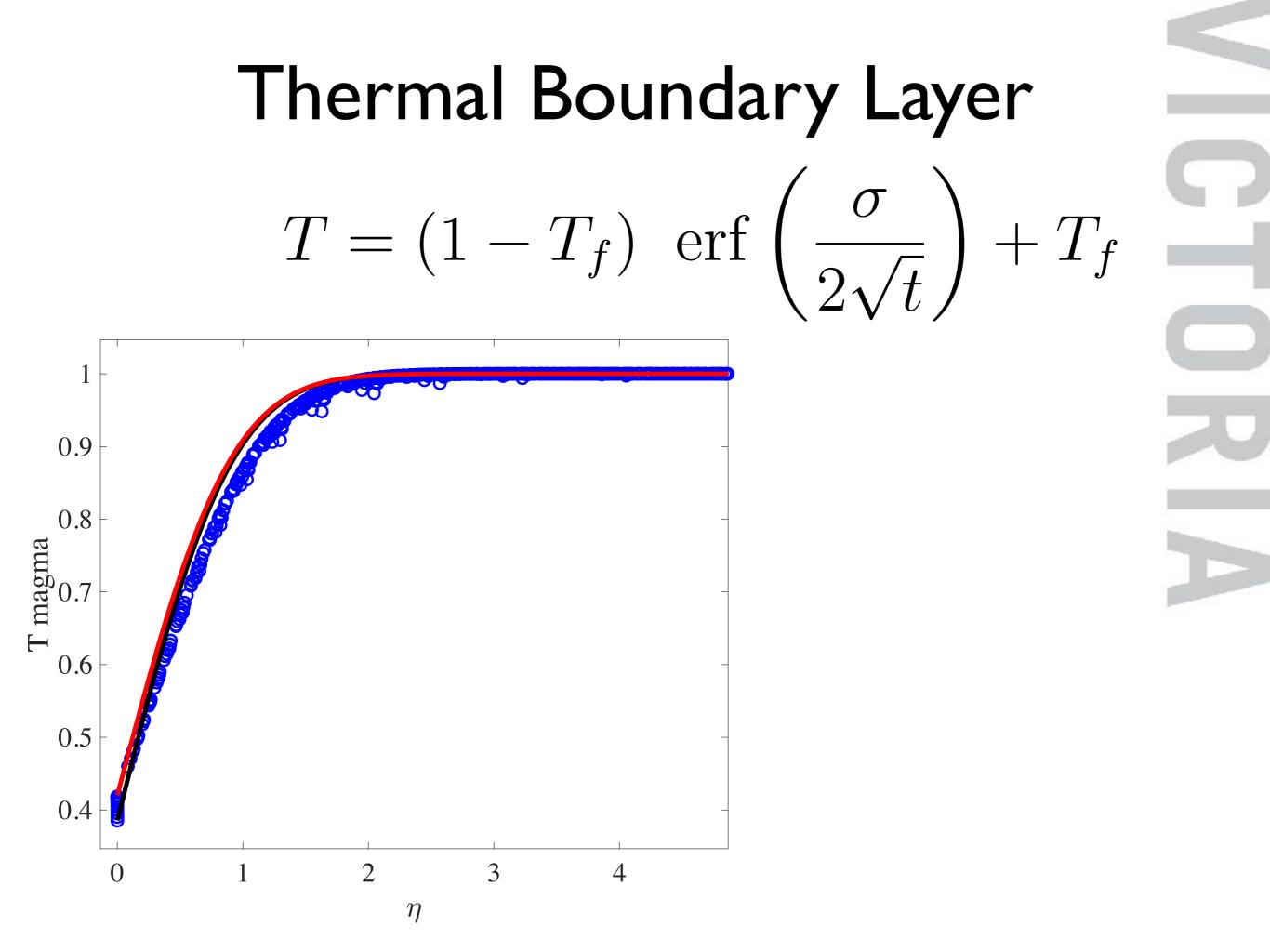




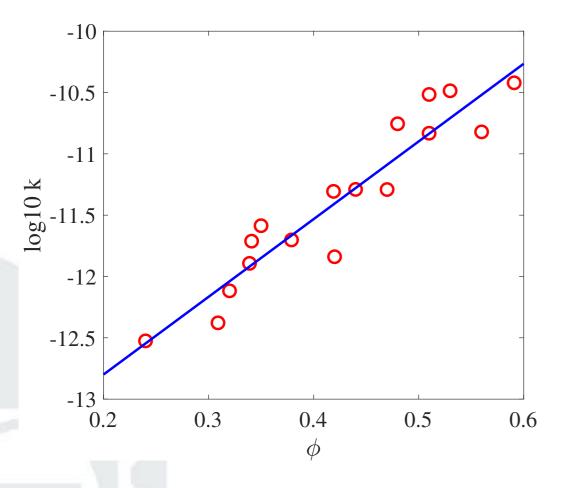
initial T gradient: unbounded?

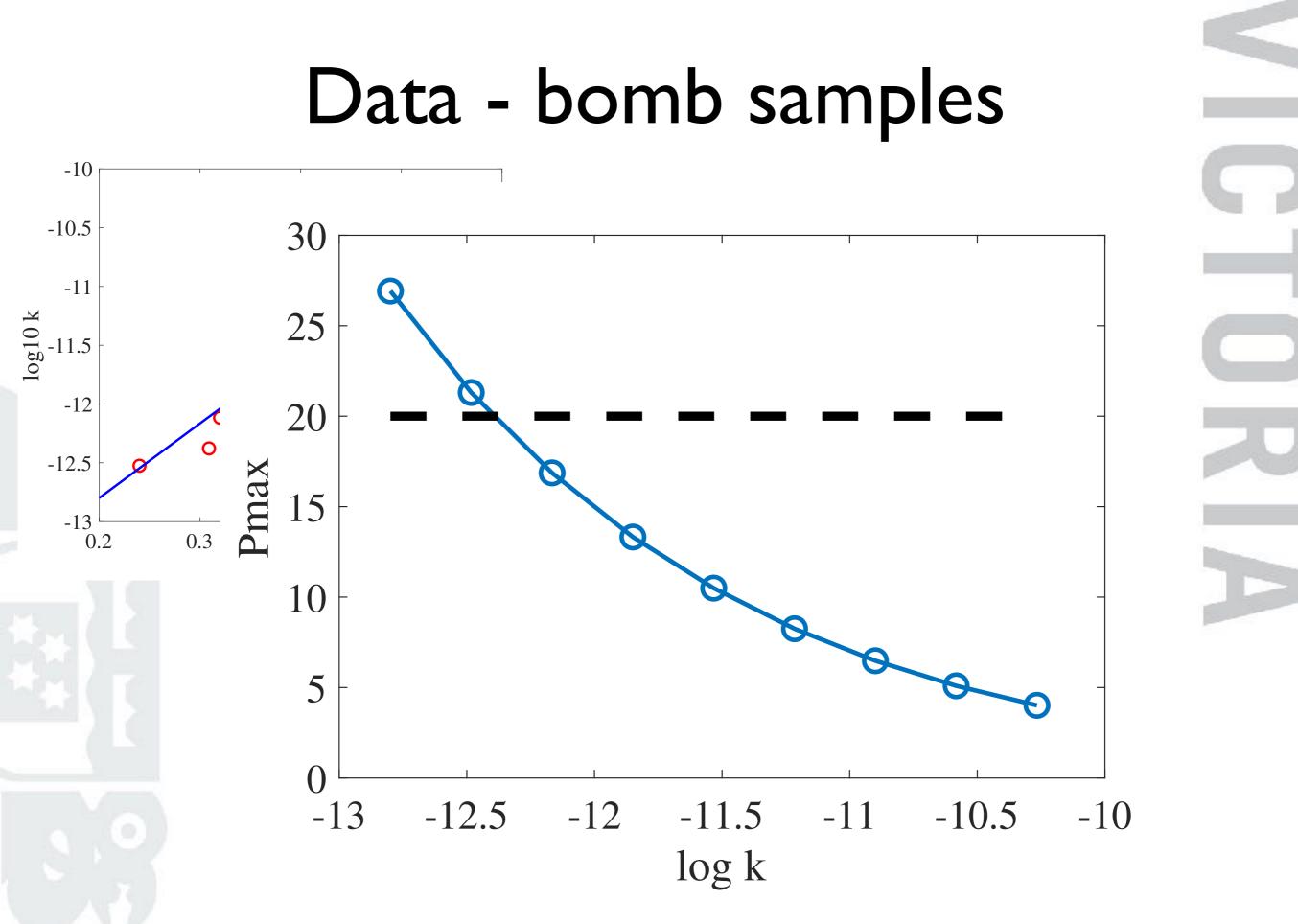




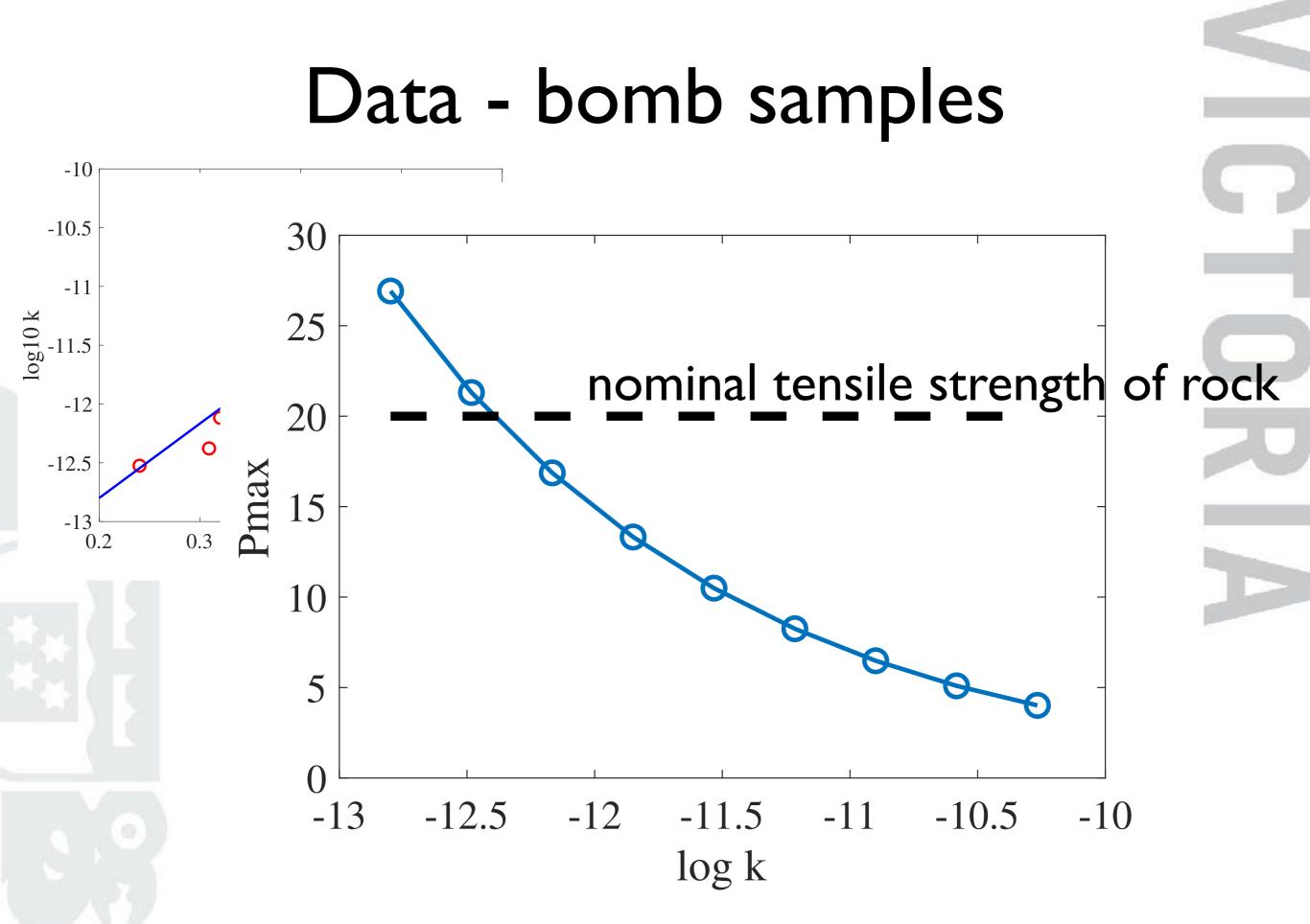


Data - bomb samples

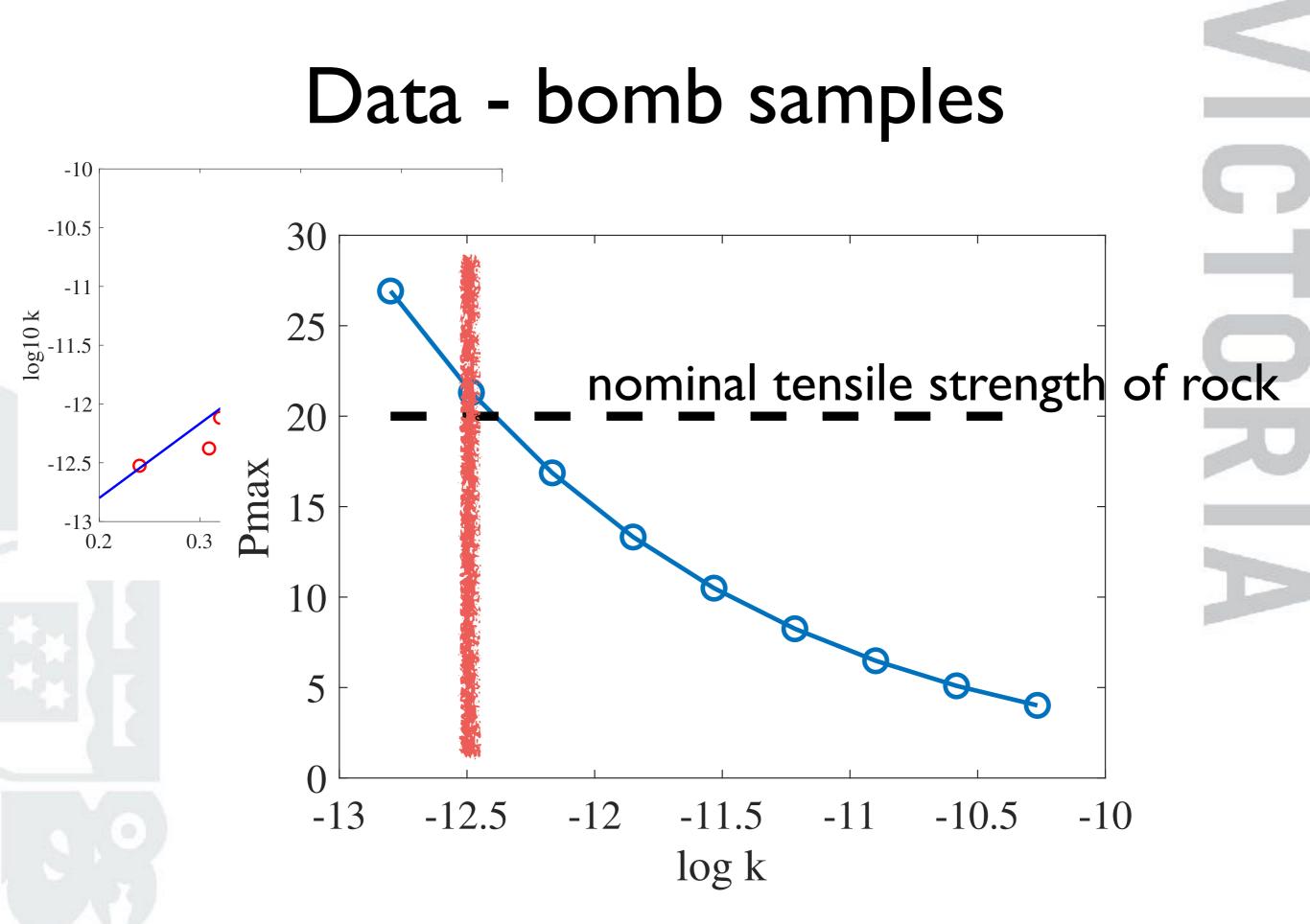




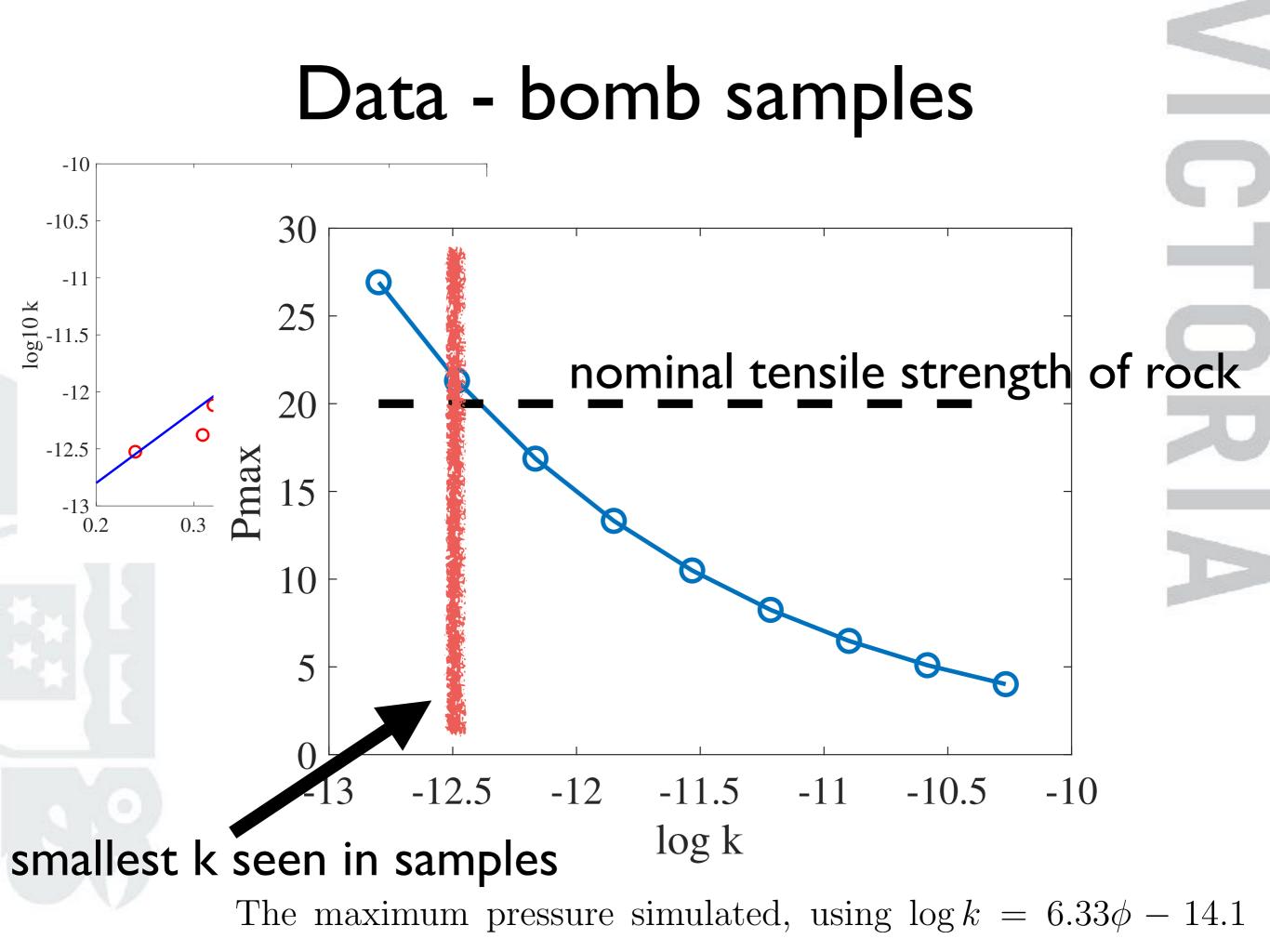
The maximum pressure simulated, using $\log k = 6.33\phi - 14.1$



The maximum pressure simulated, using $\log k = 6.33\phi - 14.1$



The maximum pressure simulated, using $\log k = 6.33\phi - 14.1$



Conclusions

Hunga Tonga Before & After

Conclusions numerics and asymptotics => fragmentation criterion

Conclusions numerics and asymptotics => fragmentation criterion

Conclusions numerics and asymptotics => fragmentation criterion pressure, temperature: different timescales

Conclusions numerics and asymptotics => fragmentation criterion pressure, temperature: different timescales

initial T gradient is unbounded, approximated by similarity erf

Conclusions numerics and asymptotics => fragmentation criterion pressure, temperature: different timescales initial T gradient is unbounded, approximated by similarity erf

hope to use steady state pressure solution to bound the maximum pressure

Thank you!