

Towards the predictive simulation of high-mountain landslide cascades

Martin Mergili and Shiva P. Pudasaini

Institute of Applied Geology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria | Department of Geography and Regional Research, University of Vienna, Vienna, Austria | Institute of Geosciences, Geophysics Section, University of Bonn, Bonn, Germany

Challenges

Solutions?

Preliminary results

Conclusions

Perspectives

7 May 2020 | EGU General Assembly

Complex landslide processes can be successfully back-calculated with the r.avaflow computational tool (https://www.avaflow.org) Mergili et al. (2017, GMD), Pudasaini and Mergili (2019, JGR ES)

Year Place	Description	Reference
2012 Santa Cruz Valley (Cordillera Blanca, Perú)	Multi-lake outburst flood involving three lakes and the entrainment of a large amount of sediment, starting from a landslide from a moraine	Mergili et al. (2018, ESPL)
1962 and 1970 Huascarán (Cordillera Blanca, Perú)	Debris-mud-ice avalanches starting as rock-ice falls, entrainment of snow, ice, and debris, extremely high velocity and runout distance	Mergili et al. (2018, Geomorphology)
1941 Quilcay Valley (Cordillera Blanca, Perú)	Sudden drainage of Lake Palcacocha (breach of moraine dam), complex flow downstream leading to the drainage of another lake and excessive channel erosion	Mergili et al. (2020, HESS)
2017 Piz Cengalo – Bondo (Switzerland)	Initial rock slide-rock fall, entrainment and melting of glacier ice, resulting rock avalanche evolving into debris flow	Mergili et al. (2020, NHESS)
1967 Steinholtsdalur (Iceland)	Rock slide onto a glacier, entrainment of ice and drainage of proglacial lake, distal flood	Gylfadóttir et al. (2019, EGU)

However, the transfer to forward simulations or predictive simulations remains a challenge

Challenges

Solutions?

Preliminary res

ts Conclu

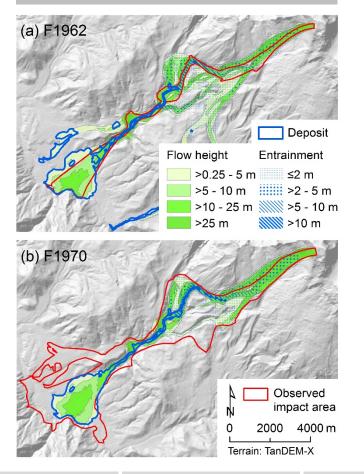
onclusions

Perspectives

2

7 May 2020 | EGU General Assembly

Huascarán events


Successful backcalculations

(b) R1970

Contraction of the second seco

Terrain: TanDEM-X

Failed forward calculations

Challenges

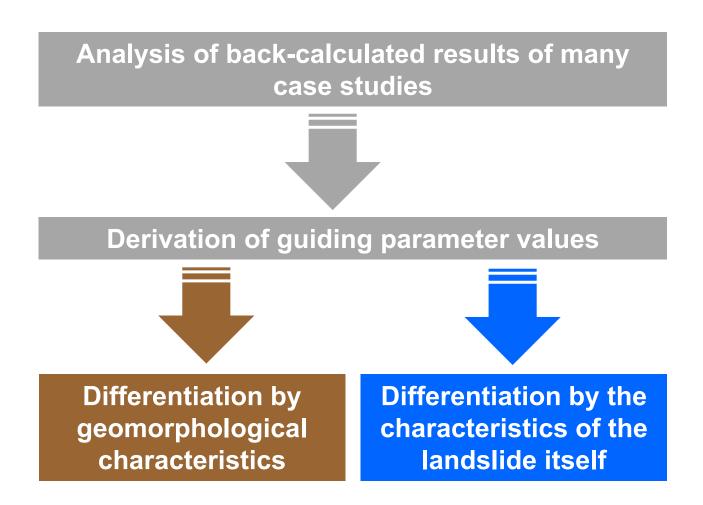
Solutions?

reliminary results

Conclusio

Per

7 May 2020 | EGU General Assembly


Mergili and Pudasaini, Predictive simulation of complex high-mountain landslide cascades

Mergili et al. (2018, Geomorphology)

3

Challenges

Solutions?

Preliminary res

Conclusion

Perspectives

4

7 May 2020 | EGU General Assembly

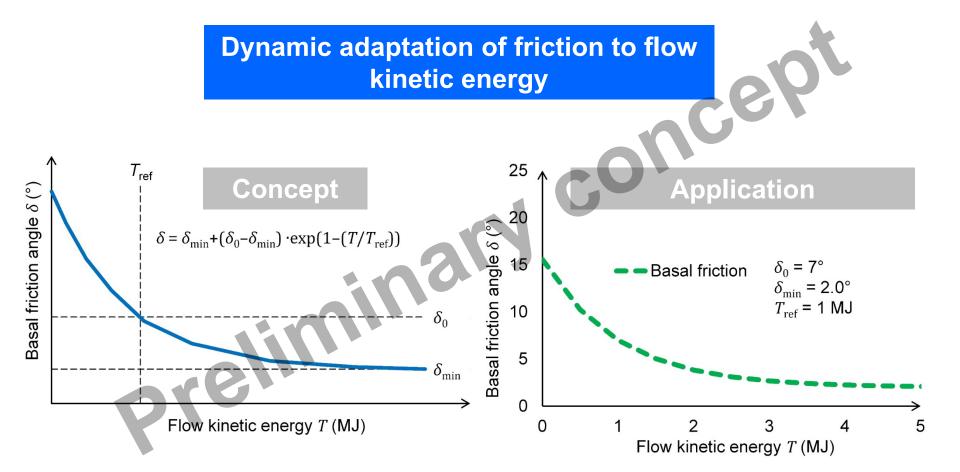
Static parameter ranges

	Class	δ	C _{AD}	C _{FF}	C _E (d)	C _E (i)
Α	Steep mountain slope, fall-like movement of rock and/or ice	2, 13, 16, 20	0.01*, 0.1, 0.2	0–0.00025, 0.0005		G
В	Rock(-ice) avalanche over glacier	5, 6, 6, 8	0.005*, 0.01, 0.02	0–0.00025, 0.001, 0.0005	JUE	-6.5, -8.2
С	Rock(-ice) avalanche over debris slope	5–8, 10	0.005*	0–0.0001	-8.06.5	
D	Channelized high- energy flow of debris, mud, and/or ice	2–5	0.001*	0–0.00025		
E	Channelized debris flow	8–20, 20, 12, 7, 16 (11)	0.04, 0.005*, 0.01	0, 0.004, 0.0005	-6.75, -7.15	
F	Channelized water- dominated flow	8–20, 0, 12, 7, 16 (11)	0.04, 0.005*, 0.01	0, 0.004, 0.0005	-7.15	
G	Flow through narrow gorge	20	0.04	0.5		
Н	Flow spreading on debris cone	8	0.001*	0.00025		

Challenges

Solutions?

Preliminary resu


Conclusior

Perspectives

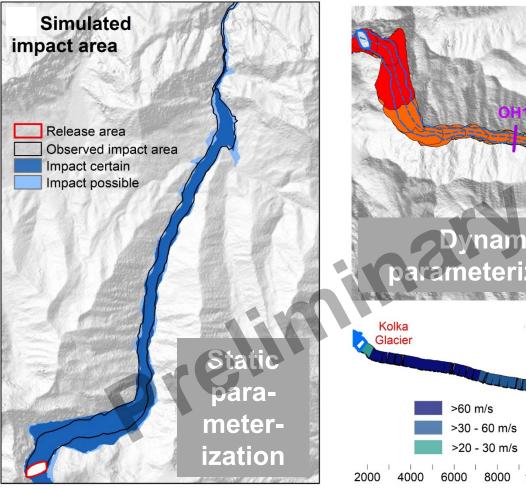
7 May 2020 | EGU General Assembly

Challenges

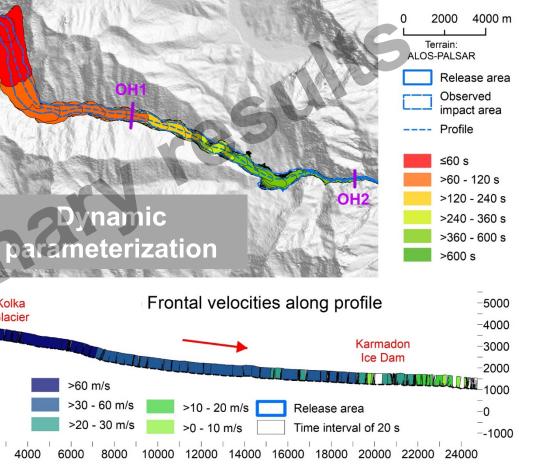
Solutions?

Preliminary r

Conclusion


Perspectives

7 May 2020 | EGU General Assembly



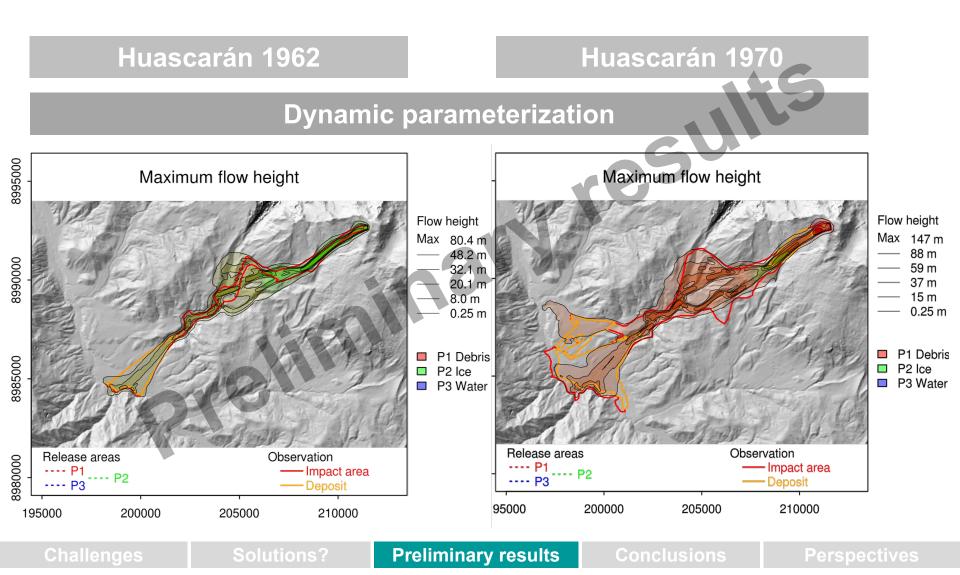
Travel times

Kolka-Karmadon 2002

Challenges

Solutions

Preliminary results Conclusions


Perspectives

7

7 May 2020 | EGU General Assembly

7 May 2020 | EGU General Assembly

Mergili and Pudasaini, Predictive simulation of complex high-mountain landslide cascades

8

- First results are promising both the static and the dynamic parameterization of predictive simulations yield plausible results for the two test cases
- Parameter constraints and function for dynamic adaptation of friction have to be refined
- More back-calculations are necessary to make the guiding parameters more reliable
- Testing, testing, testing ...

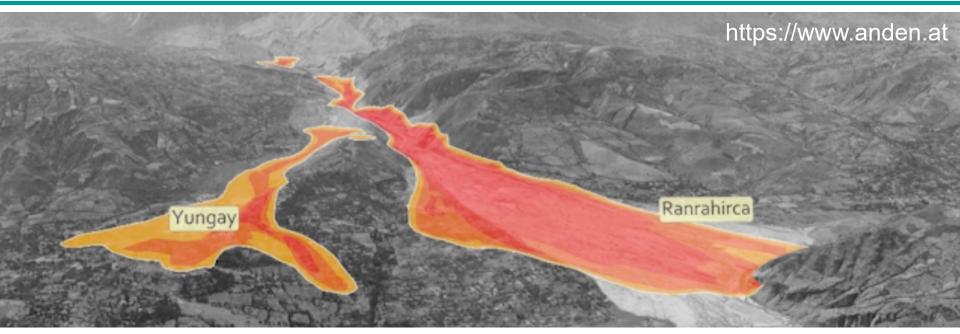
Challenges

Solutions

Preliminary res

Conclusions

Perspectives


9

7 May 2020 | EGU General Assembly

Thank You for your participation!

martin.mergili@boku.ac.at

This work was conducted as a follow-up to the international cooperation project "A GIS simulation model for avalanche and debris flows (avaflow)" supported by the German Research Foundation (DFG, project number PU 386/3-1) and the Austrian Science Fund (FWF, project number I 1600-N30).

Challenges

Solutions?

Preliminary results

Conclusions

Perspectives

7 May 2020 | EGU General Assembly