

Terrestrial CO₂ Fluxes, Concentrations, Sources and Budget in Northeast China: Observational and Modeling Studies

Xiaolan Li¹, Xiao-Ming Hu², Changjie Cai³, Jiaqing Yu¹, Yao Zhang⁴, Jingmiao Liu⁵

¹Institute of Atmospheric Environment, China Meteorological Administration, Shenyang
²Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma
³Department of Occupational and Environmental Health, University of Oklahoma Health Sciences Center, OU
⁴Department of Microbiology and Plant Biology, and Center for Spatial Analysis, OU
⁵Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

April 20, 2020

© Authors. All rights reserved

Trend of CO₂ concentration

Global warming!!

Global CO₂ sources and sinks

Uncertainties of terrestrial CO₂ fluxes are large

Terrestrial CO₂ fluxes in different regions

(Sourish Basu et al., 2018)

Uncertainties in each region are large too. Asia is CO₂ sink!!

Northeast China: a major CO₂ sink in summer

Mixed forest and cropland dominate in Northeast China Crop area is still increasing!!

SIF: Sun-induced Fluorescence, proportional to photosynthesis

Long-term tower measurements, focusing on 2016

2016 downscaling using WRF-VPRM: a weather-biosphere-online-coupled model

- Resolution: 20 km in d01; 4 km in d02
- Meteorology initial/boundary conditions: NECP/DOE R2
- CO₂ initial/boundary conditions: 3°×2° CarbanTracker 2017
- Anthropogenic emissions of CO₂: ODIAC

	Crops	Mixed forest	Evergreen forest	Deciduous forest	Shrub	Savanna	Grass
α	0.1300	0.2000	0.1247	0.0920	0.0634	0.2000	0.0515
β	0.5420	0.27248	0.2496	0.8430	0.2684	0.3376	-0.0986
λ	0.085	0.100	0.130	0.100	0.180	0.180	0.115
PAR ₀	1074.9	419.50	745.306	514.13	590.7	600.0	717.1

Following Hu et al. (2019) based on Hilton et al. (2013)

The sensitivity of simulated CO₂ flux to VPRM parameters

	Ensemble Simulation	α	β	λ	PAR ₀
multiparameter experiment	ES1	[0.12, 0.30] -40 ~ 50%*	[0.50, 1.20] -50 ~ 20% [*]	[0.09, 0.14] -10~40%*	[350, 600] -16.57 ~ 43.03% [*]
	ES2	[0.12, 0.30]	1	0.1	419.5
single-	ES3	0.2	[0.50, 1.20]	0.1	419.5
parameter	ES4	0.2	1	[0.09, 0.14]	419.5
experiment	ES5	0.2	1	0.1	[350, 600]

 $NEE_{ES1}(i,t) = f\{\alpha(i), \beta(i), \lambda(i), PAR_0(i), t\}$

i=1, 2, ..., 100, *t*: hours during the growing season

	Crops	Mixed forest	Evergreen forest	Deciduous forest	Shrub	Savanna	Grass
α.	0.1300	0.2000	0.1247	0.0920	0.0634	0.2000	0.0515
β	0.5420	0.27248	0.2496	0.8430	0.2684	0.3376	-0.0986
λ	0.085	0.100	0.130	0.100	0.180	0.180	0.115
PAR ₀	1074.9	419.50	745.306	514.13	590.7	600.0	717.1

OCO-2 satellite-retrieved XCO₂ (L2 Lite Version 9)

Advantage: spatiotemporal coverage Disadvantage: interfere with cloud and haze pollution!!

Seasonal variations of CO₂ fluxes and concentrations

MODIS vegetation type

Bias of terrestrial respiration

Seasonal variation of CO₂ fluxes and concentrations

MODIS vegetation type

Episodic variation on October 15, 2016

Regional transport on October 15

Anthropogenic emissions & biogenic contribution

Anthropogenic emissions only

Anthropogenic contribution: 59.4 \pm 5.9% Biogenic contribution: 40.6 \pm 5.9%

Vertical cross-section on October 15

Regional transport as well as subsidence?

OCO-2 retrieved XCO₂ (L2 Lite Version 9)

Advantage: spatiotemporal coverage Disadvantage: interfere with cloud and haze pollution!!

Seasonal variation of XCO₂ over Northeast China

Monthly variation range: 10 ppmv

Annual mean contribution:

- anthropogenic: 0.84 ppmv
- biogenic: -0.60 ppmv

Weak winds favors the large anthropogenic contribution of XCO₂ in summer

Mean diurnal variation of CO₂ fluxes and concentrations in growing season (May through September)

WRF-VPRM underestimates diurnal variation range over mixed forest

Ensemble offline VPRM simulations over mixed forest, predictability of CO₂ fluxes

Table 3 Range of VPRM parameters in five groups of ensemble simulations, with *

Ensemble Simulation	α	β	λ	PAR ₀
ES1	[0.12, 0.30]	[0.50, 1.20]	[0.09, 0.14]	[350, 600]
	$-40 \sim 50\%^*$	-50 ~ 20%*	$-10 \sim 40\%^{*}$	$-16.57 \sim 43.03\%^*$
ES2	[0.12, 0.30]	1	0.1	419.5
ES3	0.2	[0.50, 1.20]	0.1	419.5
ES4	0.2	1	[0.09, 0.14]	419.5
ES5	0.2	1	0.1	[350, 600]

representing relative variation to the default values

Conclusions

- Mixed forest is observed as a stronger CO₂ sink/source than rice paddy on average in 2016;
- Negative biogenic contribution offset about 70% of anthropogenic contribution of XCO₂ over Northeast China in 2016;
- The uncertainty of NEE simulation largely depends on four VPRM parameters, especially the maximum light use efficiency λ.

Please refer to: Li, X., Hu, X.- M., Cai, C., Jia, Q., Zhang, Y., Liu, J., et al. (2020). Terrestrial CO2 fluxes, concentrations, sources and budget in Northeast China: Observational and modeling studies. Journal of Geophysical Research: Atmospheres, 125, e2019JD031686. https://doi.org/10.1029/2019JD031686