Jingyu Dai, Hongyan Liu*, Yongcai Wang, and Qinghua Guo Semiarid forests characterized by the presence of "trub" species, which have short heights but large canopy sizes, can maintain a high carbon sequestration rate. By integrating terrestrial laser scanning (TLS), we quantified drought-forced tree morphological variation along a precipitation gradient. Theoretical CA-Height relationships widely adopted by dynamic global vegetation models (DGVMs) matched only the 5th percentile of our results, which is problematic for estimating open forests in semiarid regions. Our results demonstrate the importance of tree morphological studies for both tree environment-acclimation strategies and the improvement of DGVMs. Annual precipitation (MAP) explained 70.3% of variation in trunk morphological traits like tree height (Height) and leaf morphological traits, but had less explaination on canopy traits like canopy area (CA). The trend toward "trubs" under a drying climate implies two decoupled functions of stems, the spatial arrangement of leaves and hydraulic efficiency, and can be an important strategy for trees to balance water and carbon.