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The task under investigation

I The downward continuation of satellite data of the gravitational potential is important in order to monitor the system
Earth (e. g. the climate change). However, mathematically speaking, it is an ill-posed inverse problem and, thus,
demands sophisticated mathematical methods.

I Here, we are interested in matching pursuits as our choice of method: the gravitational potential is then approximated
by a mixture of different types of trial functions from a so-called dictionary. Note that other methods usually represent
the potential with only one type of trial functions.

I Generally, a dictionary is a set of trial functions. It usually contains different types of them like spherical harmonics,
radial basis functions and wavelets (i. e. low and band pass filters) as well as Slepian functions.

Previously, the approximation obtained from a matching pursuit can only be built from a-priori chosen dictionary elements.
⇒Which trial functions should the dictionary contain, e. g., for the downward continuation of satellite data?

I For traditional matching pursuits (used for interpolation tasks), dictionary learning approaches were developed. There,
the evaluated dictionary elements were manipulated at grid points in order to determine optimal ones.

Due to their strategic aims and mathematical differences in the underlying problems, these methods cannot be transferred
straightforwardly to the matching pursuits for inverse problems.
⇒ A dictionary learning technique for the Inverse Problem Matching Pursuit (IPMP) algorithms is needed.

← Back to overview
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← Back to overview

← Back to LIPMPs

Data of the gravitational potential can be retrieved from the EGM2008 as well as the GRACE
and GRACE-FO satellite missions. In contrast to the EGM2008, the GRACE data also yields
time-dependent information. In particular, we are interested in its values at the Earth’s sur-
face when we are given data on a satellite orbit.

Mathematically, on a satellite orbit, the potential can be represented pointwise by

V (ση) = (T f ) (ση) =
∞∑
n=0

n∑
j=−n

〈f , Yn,j〉L2(S2) σ
−n−1Yn,j (η) , σ > 1, η ∈ S2

,

for the unit sphere S2 and with spherical harmonics Yn,j , n ∈ N0, j = −n, ..., n.

T is then called the upward continuation operator. Due to σ−n−1 for σ > 1 and n ∈ N0,
we see that T has exponentially decreasing singular values.

Thus, the inverse downward continuation operator, has exponentially increasing singular val-
ues: that means, it cannot be continuous.

Hence, the downward continuation of the gravitational potential from satellite altitude to the
Earth’s surface is an ill-posed inverse problem: a challenging task in the geosciences!
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The term Inverse Problem Matching Pursuit (IPMP) algorithm summarizes the
I Regularized Functional Matching Pursuit (RFMP) algorithm and the

I Regularized Orthogonal Functional Matching Pursuit (ROFMP) algorithm.

The IPMP algorithms solve (ill-posed) inverse problem using a Tikhonov regularization.

In particular, the RFMP algorithm starts with an initial approximation f0 and iteratively adds
weighted dictionary elements (=trial functions): fN+1 := fN + αN+1dN+1 where

(αN+1, dN+1) := arg min
(α,d)∈R×D

(
‖y − Tk (fN + αd)‖2

R` + ‖fN + αd‖2
H2

)
for the finite dictionary D, the Sobolev space H2 and the discretized upward continuation

operator (Tk·) =
(

(T ·)
(
ση

i
))

i=1,...,`
, η ∈ S2

, σ > 1.

The ROFMP algorithm follows a similar routine but choosesαN+1 and dN+1 in an orthogonal

fashion.

Hence, the algorithms support accuracy, are flexible with respect to the task and the data-

sources and are stable as well as yield a continuous function as their result. Moreover, they

proved their applicability in a wide range of applications like downward continuation, inverse

gravimetry and medical imaging.
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We consider the following trial functions as dictionary elements:

spherical harmonics Slepian functions

Abel–Poisson low pass filters Abel–Poisson band pass filters

Then

I an approximation (e. g. of the gravitational potential) will most likely be built from a
mixture of these functions.

I the (in-)finite dictionary for an IPMP algorithm is the union of corresponding trial
function classes:

D = [N]SH ∪ [S]SL ∪ [BK ]APK ∪ [BW ]APW ,

with N ⊂ {(n, j) | n ∈ N0, j ∈ {−n, ..., n}}, S ⊂ [−1, 1]× SO(3) and
BK , BW ⊂ B1(0).

I all types of trial functions are represented by characteristic parameters:
spherical harmonics by their degree n and order j , Slepian functions by their
localization region R(c, A(α, β, γ)), Abel–Poisson low and band pass filters by their
centre x/|x| and scale |x|.
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Fully normalized spherical harmonics are global polynomials on the sphere: e. g.

Yn,j (η(ϕ, t)) :=

√
2n + 1

4π

(n − |j|)!

(n + |j|)!
Pn,|j|(t)


√

2 cos(jϕ), j < 0,
1, j = 0,√

2 sin(jϕ), j > 0,

for η(ϕ, t) ∈ S2.
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Slepian functions are band-limited and optimally localized in a localization region
(here a spherical cap): e. g.

g(k,N)
((

c, A (α, β, γ) ε3
)
, η
)

:=
N∑

n=0

n∑
j=−n

g(k,N)
n,j

(
c, A (α, β, γ) ε3

)
Yn,j (η)

for η ∈ S2
, ε

3 = (0, 0, 1)T
, c ∈ [−1, 1] and A(α, β, γ) ∈ SO(3).
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Abel–Poisson kernels are local functions and, in particular, low pass filters: e. g.

K (x, η) :=
1− |x|2

4π(1 + |x|2 − 2x · η)3/2

for η ∈ S2 and x ∈ B̊1(0).



School of Science and Technology

Department of Mathematics

Geomathematics Group

Necessary basics

Downward continuation

The IPMP algorithms

Trial functions

← Back to overview

← Back to LIPMPs

We consider the following trial functions as dictionary elements:

spherical harmonics Slepian functions

Abel–Poisson low pass filters Abel–Poisson band pass filters

Then

I an approximation (e. g. of the gravitational potential) will most likely be built from a
mixture of these functions.

I the (in-)finite dictionary for an IPMP algorithm is the union of corresponding trial
function classes:

D = [N]SH ∪ [S]SL ∪ [BK ]APK ∪ [BW ]APW ,

with N ⊂ {(n, j) | n ∈ N0, j ∈ {−n, ..., n}}, S ⊂ [−1, 1]× SO(3) and
BK , BW ⊂ B1(0).

I all types of trial functions are represented by characteristic parameters:
spherical harmonics by their degree n and order j , Slepian functions by their
localization region R(c, A(α, β, γ)), Abel–Poisson low and band pass filters by their
centre x/|x| and scale |x|.

Dictionary learning algorithms for the downward continuation of the gravitational potential c© N. Schneider & V. Michel. All rights reserved. 4 / 8

7 Close figure

Abel–Poisson wavelets are also local functions and, in particular, band pass filters: e. g.

W(x, η) := K (x, η)− K (|x|x, η)

for η ∈ S2 and x ∈ B̊1(0).
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The Learning Inverse Problem Matching Pursuit (LIPMP) algorithms shall provide a strategy
to avoid choosing manually and a-priori a dictionary for the IPMP algorithms.

The term LIPMP algorithm summarizes the

I Learning Regularized Functional Matching Pursuit (LRFMP) algorithm and the

I Learning Regularized Orthogonal Functional Matching Pursuit (LROFMP) algorithm.

Approach

An LIPMP algorithm follows the same routine as the respective IPMP algorithm (click here).
However,D is the infinite set of spherical harmonics up to a certain degree, all possible
Slepian functions as well as all possible Abel–Poisson low and band pass filters. Then we
additionally compute a finite "dictionary of candidates" (αN+1, dN+1) in each iteration which
consists of one candidate from each type of trial function. The candidates from the Slepian
functions as well as the Abel–Poisson low and band pass filters are obtained by solving
constrained non-linear optimization problems.

I The chosen trial functions constitute a "learnt" dictionary which can be used in future
runs of the IPMP algorithms. A maximal spherical harmonic degree is also learnt.

I The LIPMP algorithms are standalone approximation algorithms for inverse problems
as well. In particular, they are advancements of the IPMP algorithms as they
supersede the need to choose the dictionary.
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For an overview of the algorithm’s structure click here.

The algorithm starts in the red and terminates in the green circle.

The different types of arrows are only used for an improved visibility.
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With respect to the convergence of the algorithms:
I Due to their very similar structure, the LRFMP algorithm inherits the results of the

RFMP algorithm. In particular, this means, the approximation converges towards the
solution of the regularized normal equation.

I Unfortunately, for the ROFMP algorithm, there exist not as many results as for the
RFMP algorithm. Those that exist have technical assumptions that are in question for
the LROFMP algorithm.

With respect to the learnt dictionaries:
I Optimal dictionaries must be infinite by construction. Hence, it is unlikely that a learnt

dictionary will converge towards an optimal one. However, the LIPMP algorithms
already work with an optimal dictionary.

I In the LRFMP algorithm, the sequence of learnt dictionaries

D∗0 (f0, Tk, λ, y) :=

{
{f0}, f0 6≡ 0,
∅, else,

D∗N+1 (f0, Tk, λ, y) := D∗N (f0, Tk, λ, y) ∪ {dN+1}, N ∈ N,
is a sequence of well-working dictionary. That means, in the limit N →∞, it will be
able to represent the solution of the regularized normal equation.

I Note that a learnt dictionary depends particularly on the operator, the regularization
parameter and the data (i. e. the inverse problem at hand).
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We
I consider EGM2008, GRACE and synthetic data, respectively.

I use a regularly distributed grid of 12684 grid points (if not stated otherwise).

I assume that the data are given at 500 km satellite height (if not stated otherwise).

I include 5 % Gaussian noise.

I choose the tested regularization parameter with a minimal relative approximation error.

I terminate the algorithms if the relative data error falls below the noise level.
Furthermore, we terminate the algorithms after 1000 iterations at the latest.

I compare the learnt dictionary with a manually chosen dictionary as well as consider
the LIPMP algorithms as standalone approximation algorithms.

I use a manually chosen dictionary of 95152 trial functions (click here).

I include a starting dictionary of 13903 trial functions (click here).

I apply the learnt dictionary only iteratively (i. e. in the N-th iteration of an IPMP
algorithm only the first N learnt dictionary elements can be chosen).

I use the same regularization parameter for learning and applying the learnt dictionary.

I set some technical values.

We show a selection from our latest results.
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{
K (x, ·)
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x

|x|
∈ X m

}
[
Bm

W

]
APW

=

{
W(x, ·)
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X m contains 4551 regularly distributed grid points on S2

Z = {0.75, 0.80, 0.85, 0.89, 0.91, 0.93, 0.94, 0.95, 0.96, 0.97}
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Nm]

SH
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[
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[
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W
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EGM2008 GRACE May 2008 GRACE 2009

EGM2008 data is used.

The regularization parameter is chosen as 10−9‖y‖R` in all experiments.

The final relative noise level is slightly below the noise level.

See also a comparison of the absolute approximation errors obtained in the RFMP (click

here) and the ROFMP (click here) algorithm, respectively.

algorithm RFMP RFMP ROFMP ROFMP

size of dictionary 95152 ≤ 637 95152 ≤ 550

iterations 957 662 766 577

final relative RMSE 0.000466 0.000471 0.000463 0.000467

CPU-runtime in h 514.03 507.22 561.76 665.76
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Figure: Absolute approximation errors obtained by the RFMP algorithm with the
manually chosen (upper left) and the learnt dictionary (upper right). In the lower row,

the solution is presented. The colour scale is adapted in the upper row plots for a
better comparison. All values in m2/s2.



School of Science and Technology

Department of Mathematics

Geomathematics Group

Experiments

Settings

Comparison

Standalone

← Back to overview

EGM2008 GRACE May 2008 GRACE 2009

EGM2008 data is used.

The regularization parameter is chosen as 10−9‖y‖R` in all experiments.

The final relative noise level is slightly below the noise level.

See also a comparison of the absolute approximation errors obtained in the RFMP (click

here) and the ROFMP (click here) algorithm, respectively.

algorithm RFMP RFMP ROFMP ROFMP

size of dictionary 95152 ≤ 637 95152 ≤ 550

iterations 957 662 766 577

final relative RMSE 0.000466 0.000471 0.000463 0.000467

CPU-runtime in h 514.03 507.22 561.76 665.76
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Figure: Absolute approximation errors obtained by the ROFMP algorithm with the
manually chosen (upper left) and the learnt dictionary (upper right). In the lower row,

the solution is presented. The colour scale is adapted in the upper row plots for a
better comparison. All values in m2/s2.
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EGM2008 GRACE May 2008 GRACE 2009

GRACE data from May 2008 is used.

The regularization parameter is chosen as 10−4‖y‖R` in all experiments.

The final relative noise level is slightly below the noise level.

See also a comparison of the absolute approximation errors obtained in the RFMP (click

here) and the ROFMP (click here) algorithm, respectively.

algorithm RFMP RFMP ROFMP ROFMP

size of dictionary 95152 ≤ 384 95152 ≤ 303

iterations 393 483 274 306

final relative RMSE 0.000340 0.000335 0.000328 0.000330

CPU-runtime in h 522.09 341.16 528.67 372.31

Dictionary learning algorithms for the downward continuation of the gravitational potential c© N. Schneider & V. Michel. All rights reserved. 6 / 8



School of Science and Technology

Department of Mathematics

Geomathematics Group

Experiments

Settings

Comparison

Standalone

← Back to overview

EGM2008 GRACE May 2008 GRACE 2009

GRACE data from May 2008 is used.

The regularization parameter is chosen as 10−4‖y‖R` in all experiments.

The final relative noise level is slightly below the noise level.

See also a comparison of the absolute approximation errors obtained in the RFMP (click

here) and the ROFMP (click here) algorithm, respectively.

algorithm RFMP RFMP ROFMP ROFMP

size of dictionary 95152 ≤ 384 95152 ≤ 303

iterations 393 483 274 306

final relative RMSE 0.000340 0.000335 0.000328 0.000330

CPU-runtime in h 522.09 341.16 528.67 372.31

Dictionary learning algorithms for the downward continuation of the gravitational potential c© N. Schneider & V. Michel. All rights reserved. 6 / 8

7 Close figure
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manually chosen (upper left) and the learnt dictionary (upper right). In the lower row,

the solution is presented. The colour scale is adapted in the upper row plots for a
better comparison. All values in m2/s2.
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EGM2008 GRACE May 2008 GRACE 2009

GRACE data from May 2008 is used.

The regularization parameter is chosen as 10−4‖y‖R` in all experiments.

The final relative noise level is slightly below the noise level.

See also a comparison of the absolute approximation errors obtained in the RFMP (click

here) and the ROFMP (click here) algorithm, respectively.

algorithm RFMP RFMP ROFMP ROFMP

size of dictionary 95152 ≤ 384 95152 ≤ 303

iterations 393 483 274 306

final relative RMSE 0.000340 0.000335 0.000328 0.000330

CPU-runtime in h 522.09 341.16 528.67 372.31
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7 Close figure

Figure: Absolute approximation errors obtained by the ROFMP algorithm with the
manually chosen (upper left) and the learnt dictionary (upper right). In the lower row,

the solution is presented. The colour scale is adapted in the upper row plots for a
better comparison. All values in m2/s2.
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EGM2008 GRACE May 2008 GRACE 2009

From the LRFMP algorithm, we learn a dictionary for each month in 2008. We use their union

to approximate GRACE data from May 2009.

The regularization parameter is chosen as 10−4‖y‖R` in all experiments.

The final relative noise level is slightly below the noise level.

See also a comparison of the absolute approximation errors obtained (click here).

algorithm RFMP RFMP

size of dictionary 95152 ≤ 6701

iterations 399 620

final relative RMSE 0.000335 0.000346
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7 Close figure

Figure: Absolute approximation error obtained by the RFMP algorithm using the
manually chosen dictionary (upper left) and using the learnt GRACE dictionary (upper

right). In the lower row, the solution is presented. The scale is adapted in the upper
row plots to improve the comparability. All values in m2/s2.
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Approximation Regular grid Irregular grid Synthetic data

The EGM2008 data is used without any satellite height.
The regularization parameter is chosen as 10−9‖y‖R` in all experi-
ments.
The algorithm terminates after 1000 iterations.

algorithm LRFMP LROFMP

final relative data error 0.075293 0.075210

final relative RMSE 0.000249 0.000253

absolute approximation error click here click here
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7 Close figure

Figure: Approximation (upper left) and absolute approximation error (upper right)
obtained by the LRFMP algorithm. In the lower row, the solution is presented. All

values in m2/s2.
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Approximation Regular grid Irregular grid Synthetic data

The EGM2008 data is used without any satellite height.
The regularization parameter is chosen as 10−9‖y‖R` in all experi-
ments.
The algorithm terminates after 1000 iterations.

algorithm LRFMP LROFMP

final relative data error 0.075293 0.075210

final relative RMSE 0.000249 0.000253

absolute approximation error click here click here
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7 Close figure

Figure: Approximation (upper left) and absolute approximation error (upper right)
obtained by the LROFMP algorithm. In the lower row, the solution is presented. All

values in m2/s2.
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Approximation Regular grid Irregular grid Synthetic data

The EGM2008 and the GRACE (May 2008) data are considered here.
The regularization parameter is chosen as 10−9‖y‖R` in all experiments
with the EGM2008 data and 10−4‖y‖R` in all experiments with the
GRACE data.
The final relative data error is equal to or slightly less than the noise
level.

See also a comparison of the absolute approximation errors obtained in
the LRFMP (click here) and the LROFMP (click here) algorithm, respec-
tively.

algorithm LRFMP LRFMP LROFMP LROFMP
data EGM2008 GRACE EGM2008 GRACE
iterations 637 384 550 303
final relative RMSE 0.000471 0.000338 0.000465 0.000318
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7 Close figure

Figure: Absolute approximation error obtained by the LRFMP algorithm (upper row)
for EGM2008 (left) and GRACE (May 2008, right) data. In the lower row, the solutions

are presented. All values in m2/s2.
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The EGM2008 and the GRACE (May 2008) data are considered here.
The regularization parameter is chosen as 10−9‖y‖R` in all experiments
with the EGM2008 data and 10−4‖y‖R` in all experiments with the
GRACE data.
The final relative data error is equal to or slightly less than the noise
level.

See also a comparison of the absolute approximation errors obtained in
the LRFMP (click here) and the LROFMP (click here) algorithm, respec-
tively.
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7 Close figure

Figure: Absolute approximation error obtained by the LROFMP algorithm (upper row)
for EGM2008 (left) and GRACE (May 2008, right) data. In the lower row, the solutions

are presented. All values in m2/s2.
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Approximation Regular grid Irregular grid Synthetic data

An irregular data grid of 6968 grid points is used (click here) for
EGM2008 data.
The regularization parameter is chosen as 5 · 10−9‖y‖R` in all experi-
ments.
The final relative data error is slightly less or equal to the noise level.

algorithm LRFMP LROFMP

iterations 975 983

final relative RMSE 0.000472 0.000521

absolute approximation error click here click here
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7 Close figure

Figure: Approximation (upper left) and absolute approximation error (upper right)
obtained by the LRFMP algorithm. In the lower row, the solution is presented. All

values in m2/s2.
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Approximation Regular grid Irregular grid Synthetic data

An irregular data grid of 6968 grid points is used (click here) for
EGM2008 data.
The regularization parameter is chosen as 5 · 10−9‖y‖R` in all experi-
ments.
The final relative data error is slightly less or equal to the noise level.
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7 Close figure

Figure: Approximation (upper left) and absolute approximation error (upper right)
obtained by the LROFMP algorithm. In the lower row, the solution is presented. All

values in m2/s2.
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Approximation Regular grid Irregular grid Synthetic data

The synthetic data consists of 3 spherical harmonics and 3 Abel–
Poisson low pass filters. Thus, we also consider only these types of
trial functions in the LROFMP algorithm.
The regularization parameter is chosen as 10−8‖y‖R` .
The final relative data error is slightly below the noise level.
Only the spherical harmonics in the solution are chosen.

algorithm LROFMP

iterations 24

final relative RMSE 0.000076

chosen filters click here
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Figure: Chosen Abel–Poisson low pass filters for perturbed data for synthetic data.
The dots stand for the centres x/|x| of the solutions. The crosses symbolize the
centres x/|x| of the chosen Abel–Poisson low pass filters. For both of them, the
colour represents the scale |x|. The size of the crosses is scaled by the absolute

value of the related chosen coefficients α (and a fixed multiple for improved visibility).
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Conclusions and Outlook
We

3 can learn a dictionary for the IPMP algorithms.

3 developed advanced approximation algorithms for inverse problems simultaneously.

3 showed the applicability for both tasks in numerical tests.

3 considered some theoretical aspects.

3 experienced: less storage demand, mostly less runtime, sparser dictionaries, similarly good approximations.

All in all, if the types of trial functions, the available storage or the runtime are critical, we advocate to use an LIPMP, in
particular the LRFMP, algorithm with spherical harmonics as well as Abel–Poisson low and band pass filters. Otherwise, the
IPMP algorithms provide good approximations as well.

We want to

7 use more data.

7 consider further geoscientific problems: for instance from seismology.

7 determine more suitable values of the regularization parameter.

7 gain further theoretical insights.

← Back to overview
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For more details...

V. Michel and N. Schneider (2020), A first approach to learning a best basis for gravitational field modelling. GEM –
International Journal on Geomathematics, https://doi.org/10.1007/s13137-020-0143-5.

N. Schneider (2020), Learning Dictionaries for Inverse Problems on the Sphere, submitted PhD-Thesis,
Geomathematics Group Siegen, University of Siegen.

Further literature on the IPMP algorithms are listed on the website of the Geomathematics Group Siegen

https://www.uni-siegen.de/fb6/geomathe/publications/index.html?lang=de.

See, in particular, the works of Fischer, Leweke (former Orzlowski), Michel, Telschow and Kontak.

Thank you for your interest in my work. If you have any questions, please do not hesitate to ask them, for instance, in the

session’s chat on Tuesday, May 5, 14:00-15:45

or reach out via the contact details given at

https://www.uni-siegen.de/fb6/geomathe/staff/schneider.html?lang=de&lang=de.
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