

Publication coming soon..

 This study has been accepted for publication in Scientific Reports:

> Egger, M., Sulu-Gambari, F., and Lebreton., L. (in press) First evidence of plastic fallout from the North Pacific Garbage Patch, *Scientific Reports*

- Expected publication date: May 6th, 11 am (CEST)
- Link to open access article (active on publication): www.nature.com/articles/s41598-020-64465-8

SCIENTIFIC REPORTS

natureresearch

Sampling

Cruise transect

Vertical concentration profiles (0-2000 m water depth) of plastic debris >500 μ m were collected at five locations onboard the Maersk Transporter in November-December 2018.

Methods

- Sea surface:
 - Manta trawling
- Water column:
 - CTD profiling (temperature, salinity, O_2 , fluorescence)
 - Underwater trawling with MOCNESS (Multiple Opening and Closing Net with an Environmental Sensing System)

Water column profiles

- Detection limit: ~ 10-4 #/m³
- Blue lines: Modelled profiles based on log-log correlations (next slide)

Power law functions to model water a column plastic concentrations

- Log-log plots of water depth vs. (a) numerical and (b) mass concentrations of plastic fragments
- Dashed line: 95% confidence interval of linear regression

Polymer composition

- Based on Raman and FTIR spectroscopy
- PE & PP are the dominant polymers at the sea surface as well as in the water column

	# fragments	PE	PP	PVC	PS	unknown
Manta 1	53	92%	8%	-	-	-
Manta 2	27	96%	4%	-	-	-
Manta 3	31	94%	6%	-	-	-
Manta 4	32	91%	9%	-	-	-
Manta 5	7	100%	-	-	-	-
MOCNESS 1	3	33%	33%	-	-	33%
MOCNESS 2	20	65%	25%	5%	5%	-
MOCNESS 3	90	83%	10%	-	1%	6%
MOCNESS 4	39	97%	-	-	3%	-
MOCNESS 5	3	67%	-	-	33%	-

Depth-integrated concentrations of micro- and mesoplastic debris

- 0-5 m: Manta trawl data corrected for wind-induced mixing (*Kukulka et al., 2012*)
- 5-2000 m: Integrated power-law functions (see slide 4), 1 m vertical resolution

• Note: Microplastics (0.5-5mm) and mesoplastics (5mm-5cm) account for an estimated ~20% of the total plastic mass loading in the GPGP, with the other 80% attributed to plastic objects > 5cm in size (Lebreton et al., 2018).

Predicted vertical distribution

- Water column concentrations were estimated as a function of the debris afloat at the ocean surface and corresponding water depth.
- No information on spatiotemporal variability -> At best, a snapshot of the vertical distribution in late 2018. Large uncertainties remain!

Discussion

Main findings

- The presence of plastics in the water column below the Great Pacific Garbage Patch (GPGP) is the result of microplastic (< 5 mm) fallout from its surface waters.
- Plastic particles in the water column are mostly in the size range of particles missing in reported surface trawls (Cózar et a., 2014; Eriksen et al., 2014).
- First results indicate that about 90% of the plastic mass in the upper 2000 m of the water column in the GPGP could be concentrated in the top 5 m.
- If not intervened, plastic fallout will likely increase contamination of the deep sea below ocean garbage patches, where cleanup is even more difficult, if not impossible.

Take-home message

Part of the plastic debris afloat in the Great Pacific Garbage Patch is lost to the underlying deep sea through fallout of small and once-buoyant plastic fragments.

Next steps

Future research

- Quantify vertical plastic flux (numerical models, sediment trap installations)
- Determine microplastic sedimentation mechanisms and their relative importance
- Evaluate spatio-temporal variability of water column concentrations

Acknowledgements

Funding

• The Ocean Cleanup donors

Sampling

- Captain and crew of Maersk Transporter
- Frank Johnson (CSA Ocean Sciences)

Analysis

- Rein Nijhof & Helen King (Utrecht University)
- Erik Zettler (NIOZ)
- Mark de Boer (Zoo of Rotterdam)