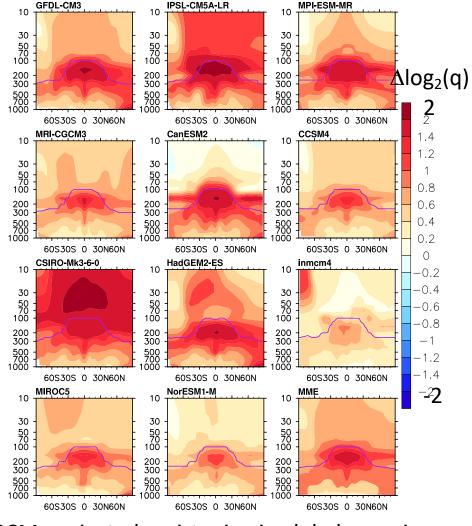
On the magnitude of the stratospheric radiative feedback in global warming

Yi Huang, Yuwei Wang Department of Atmospheric & Oceanic Sciences McGill University


> EGU 2020 AS3.3 2020.05.07

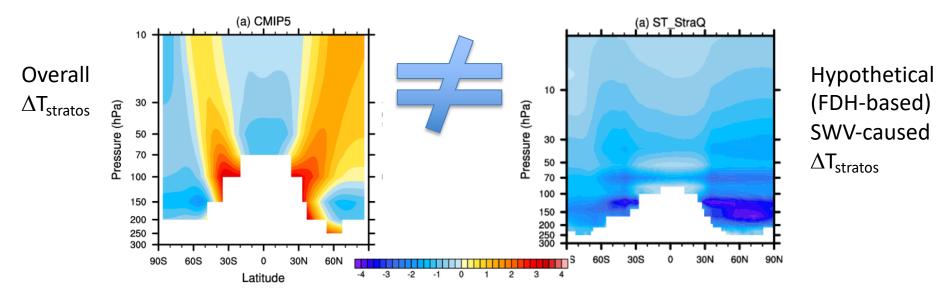
Stratospheric radiative feedback

- Feedback response: those driven by surface warming, e.g., abrupt4xCO2-sst4xCO2
- Significant stratospheric radiative feedback?
 - Significant moistening -> SWV feedback [Forster & Shine 2002, Solomon et al.
 2010, Dessler et al. 2013, Banerjee et al.
 2019...]: FDH method estimates 0.2-0.3 W m⁻² K⁻¹
 - Small overall stratospheric radiative feedback: SWV radiative forcing + Strato.
 Temperature change induced radiative flux change ~ O(0.01 W m⁻² K⁻¹) [Huang et al. 2016]

SWV: Stratospheric Water Vapor

FDH: Stratospheric radiative equilibrium and TOA flux change simulated under Fixed Dynamical Heating.

GCM-projected moistening in global warming [Huang et al. 2016]

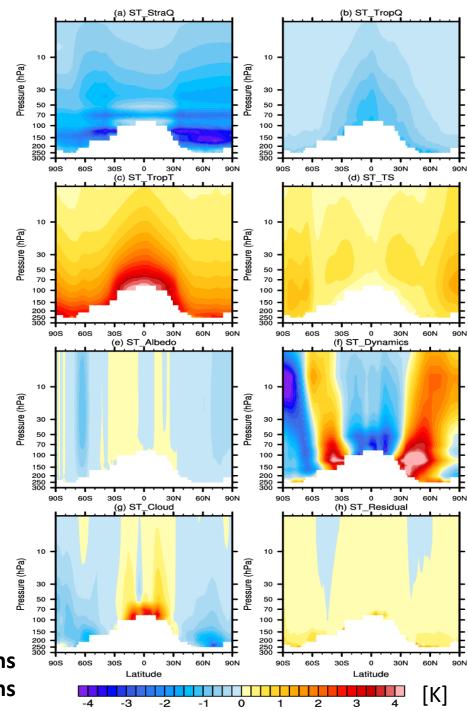

Agreements and disagreements

- TOA radiation budget perspective
- SWV radiative effect = F_{direct} + F_{indirect}

F_{direct}: SWV direct forcing (greenhouse effect: trapping of OLR)

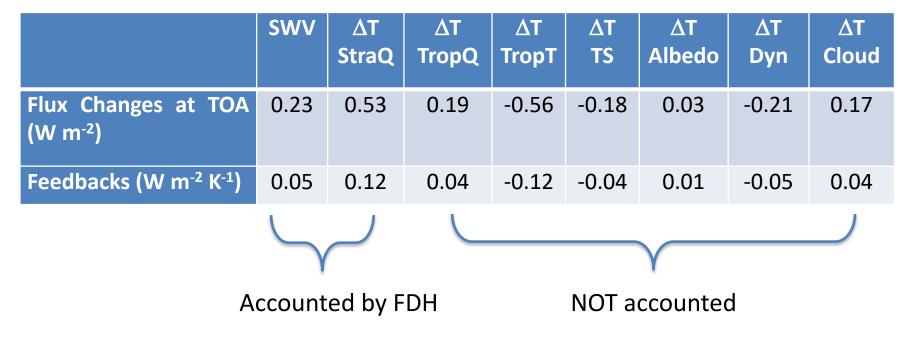
F_{indirect}: SWV indirect forcing via cooling strat. temperature and reducing OLR

- Agreed
 - F_{direct} : small, O(0.1 W m⁻²) [Huang et al. 2016; Banerjee et al. 2019]
 - F_{indirect}(Strat. Temp.) via FDH: large, O(1.0 W m⁻²) [Banerjee et al. 2019, ...]
- Disagreed
 - Is feedback temperature response in stratosphere dominated by SWV?



Full decomposition of $\Delta T_{stratos}$

- $\Delta T_{stratos}$ is NOT dominated by SWV
- Other radiative effects, esp. those from troposphere, offset SWV radiative cooling of stratosphere!


Stratos WV	Tropos WV					
Tropos Temp	Surf Temp					
Surf. Albedo	Strato Dynamics					
Clouds	Residual					

 $\Delta T_{stratos}$ change driven by different perturbations obtained via radiative equilibrium simulations

Radiative feedback of $\Delta T_{stratos}$

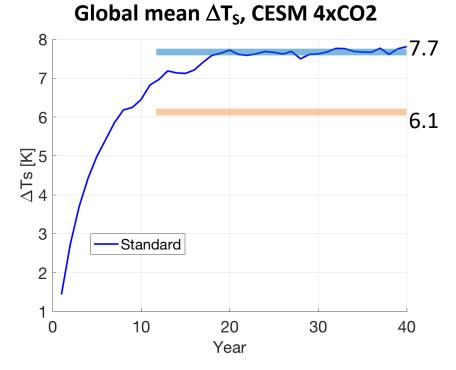
- $\Delta T_{stratos}$ is NOT dominated by SWV
- Other radiative effects, esp. those from troposphere, offset SWV radiative cooling of stratosphere and thus neutralize the SWV warming effect!

ΔR change driven by different perturbations

Surface warming effect of SWV?

 How to determine the surface warming effect of SWV?

- RTM: Instantaneous forcing [Huang et al. 2016]


- FDH: Stratosphere-adjusted forcing [Banerjee et al. 2019; Dessler et al. 2013; Solomon et al. 2020; ...]

- Mechanism denial experiment: SWV-locking

Control: 1xCO2

Standard: 4xCO2, CESM (CAM+SOM)

Locking: 4xCO2, SWV replaced with Control values

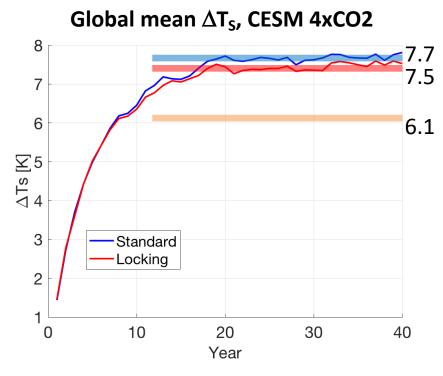
 $R_{net} = F + \lambda \Delta T_{S} = 0$ $F = 8.4 \text{ W m}^{-2} \text{ (from fixed-SST 4xCO_{2})}$ $\Delta T_{S} = 7.7 \text{ K}$ $=> \lambda = -1.1 \text{ W m}^{-2} \text{ K}^{-1}$ $\text{Had } \lambda_{SWV} = 0.3 \text{ W m}^{-2} \text{ K}^{-1} \text{ been subtracted,}$ $\Delta T_{S}(\text{no SWV feedback}) = F/-(\lambda - \lambda_{SWV}) = 6.1 \text{ K}$

Surface warming effect of SWV?

 How to determine the surface warming effect of SWV?

- RTM: Instantaneous forcing [Huang et al. 2016]

- FDH: Stratosphere-adjusted forcing [Banerjee et al. 2019; Dessler et al. 2013; Solomon et al. 2020; ...]


- Mechanism denial experiment: SWV-locking

Control: 1xCO2

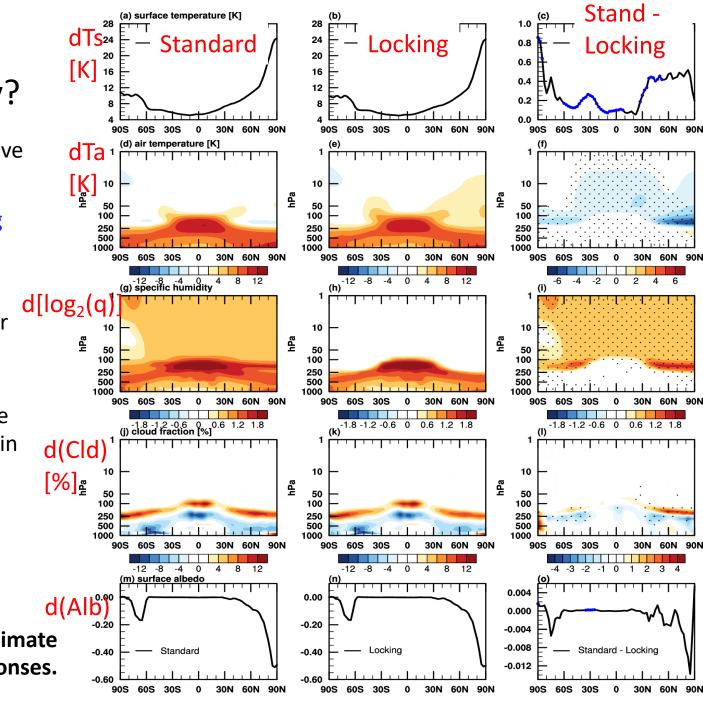
Standard: 4xCO2, CESM (CAM+SOM)

Locking: 4xCO2, SWV replaced with Control values

Insignificant (2%) warming enhancement by SWV!

 $R_{net} = F - \lambda \Delta T_{S} = 0$ $F = 8.4 \text{ W m}^{-2} \text{ (from fixed-SST 4xCO_{2})}$ $\Delta T_{S} = 7.7 \text{ K}$ $=> \lambda = -1.1 \text{ W m}^{-2} \text{ K}^{-1}$ $\text{Had } \lambda_{SWV} = 0.3 \text{ W m}^{-2} \text{ K}^{-1} \text{ been subtracted,}$ $\Delta T_{S} (\text{no SWV feedback}) = F/-(\lambda - \lambda_{SWV}) = 6.1 \text{ K}$

However, from SWV-locking: ΔT_s = 7.5 K !


Small SWV warming: why?

- TOA budget perspective
- Stratospheric cooling
- Tropospheric warming
- Cloud (high)

SWV coupled with other feedbacks;

Compensation of these feedbacks neutralize the warming effect of SWV in (Stand-Locking) experiment.

Zonally averaged climate feedback responses.

Small SWV warming: why?

- TOA budget perspective
- Stratospheric cooling
- Tropospheric warming
- Cloud (high)

SWV coupled with other feedbacks; Compensation of these feedbacks neutralize the warming effect of SWV in (Stand-Locking) experiment. FDH assessment may be misleading!

	∆T _{sur} (K)	Forcing (W m ⁻²)		$\Delta {f R}_X$ cause by Feedback Variables (W m ⁻²)						Total (W m ⁻²)	
		CO ₂ , ins.	CO ₂ , adj.	Wstr	Wtro	Tstr	Ttro	Tsur	ALB	CLD	
Standard	7.71	4.70	3.67	0.18	12.95	-0.23	-21.31	-4.91	2.09	2.69	0.02
Locking	7.53	4.70	3.67	0.00	12.77	-0.77	-20.58	-4.75	2.05	2.97	0.03
Difference	0.18	0.00	0.00	0.18	0.18	0.54	-0.73	-0.16	0.04	-0.28	-0.01

Global mean surface warming and TOA radiation flux changes, decomposed to forcing and feedback components using the kernel method.

Take-home messages

- Strong stratospheric cooling due to SWV hypothesized by FDH method: NOT observed because of compensating effects.
- Surface warming effect of SWV assessed by a mechanism-denial, SWV-locking experiment: small (2% warming enhancement).
- No evidence of a strong stratospheric radiative feedback in GCM.

References

- Huang, Y. and Y. Wang, (submitted), Stratospheric water vapor feedback disclosed by a locking experiment, Geophys. Res. Lett.
- Wang, Y. and Y. Huang, (submitted), Stratospheric radiative feedback limited by the tropospheric influence in global warming, Climate Dynamics.