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What I would have talked about...(roughly)

Hypothesis
It matters how ozone is represented in climate model simulations.

Interactive atmospheric chemistry schemes to-the-rescue?
A good but typically computationally expensive option.

A suggestion for an alternative
Machine learning parameterizations of stratospheric ozone.

Throughout my slides, I mention and link to some relevant studies
(you can hover over citations and click to be re-directed).
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Recap: ozone - a multifunctional molecule

• Ozone layer is key to life on Earth.

• Greenhouse gas.

• Air pollutant in the troposphere.
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NASA: ozone hole above Antarctica
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The evolution of climate modelling

• Many climate models still do not include atmospheric chemistry schemes.

• Often there is no well-defined way to represent ozone otherwise.

• Key issue: atmospheric chemistry can slow down models substantially.
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What if your model does not include ozone chemistry?

A standard go-to solution is to simply use an ozone field from
observations, or other chemistry-climate model simulations.

This can be an effective non-interactive set-up for historical and
RCP-type scenarios for which standardized ozone climatologies
have been provided, see e.g. Cionni et al. (2011).

For many other forcing scenarios, including paleo-climate or
abrupt-4xCO2 forcings, such ozone climatologies are typically
not provided→ ozone is often prescribed in highly unrealistic
ways, especially in the stratosphere and upper troposphere.

Peer Nowack Machine learning parameterizations for ozone 4/16

https://www.atmos-chem-phys.net/11/11267/2011/
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Example set-up for an interactive chemistry-climate model
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Atmosphere

Unified Model @ UMv7.3
3.75◦ lon x 2.5◦ lat resolution

60 vertical levels ≤ 84km

Atmospheric Chemistry

CheS chemistry model
(Chemistry for the

Stratosphere)
159 rxns / 41 species

Ocean
NEMO model

2◦ lon x 2◦ lat resolution
31 vertical levels ≥ 5km

max. depth

Sea-Ice
CICE model

2◦ lon x 2◦ lat resolution
5 different ice categories

HadGEM3
AO-UKCA

Configuration

A global climate model coupled to an interactive stratospheric chemistry scheme
See also Hewitt et al., Geosci. Model Dev., 4(2):223-253, 2011 and www.ukca.ac.uk

www.ukca.ac.uk
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Example for a non-interactive climate model configuration
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Atmosphere

Unified Model @ UMv7.3
3.75◦ lon x 2.5◦ lat resolution

60 vertical levels ≤ 84km

Fixed ozone climatology

Ozone varies seasonally,
but not with internal
variability or forcing

Ocean
NEMO model

2◦ lon x 2◦ lat resolution
31 vertical levels ≥ 5km

max. depth

Sea-Ice
CICE model

2◦ lon x 2◦ lat resolution
5 different ice categories

HadGEM3
AO-UKCA

Configuration

A global climate model coupled to an interactive stratospheric chemistry scheme
See also Hewitt et al., Geosci. Model Dev., 4(2):223-253, 2011 and www.ukca.ac.uk

www.ukca.ac.uk
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The representation of ozone matters (I)

The implicit assumption of ‘constant’ ozone in many simulations is
not correct, see above changes in ozone in abrupt-4xCO2 scenarios
for three chemistry-climate models; cf. Chiodo & Polvani (2019):
Ozone ↓ in the tropical upper troposphere/lower stratosphere
(UTLS) and ↑ elsewhere. Changes in ozone, in turn, can feedback
on stratospheric water vapour, cirrus clouds, the jet streams etc.
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https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-19-0086.1?mobileUi=0
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The representation of ozone matters (II)

For example in 4xCO2 and solar forcing simulations

- effects on global and regional warming
(e.g. Li et al. Clim. Dyn. 2013, Dietmueller et al. JGR 2014, Nowack et al. NCC

2014/JGR 2018, Muthers et al. GMD 2014, Chiodo & Polvani J. Clim. 2016)
- effects on atmospheric dynamics
(e.g. Haigh Science 1996, Rind et al. JGR 2014, Chiodo & Polvani GRL 2017,

Muthers et al. ESD 2016, Nowack et al. GRL 2017, Silverman et al. ACP 2018)

and paleo-climate simulations

- reduced temperature biases
(e.g. Heinemann MPI 2009, Noda JGR 2017 and 2018)
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https://link.springer.com/article/10.1007/s00382-012-1350-z
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2013JD020575
https://www.nature.com/articles/nclimate2451
https://www.nature.com/articles/nclimate2451
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JD027943
https://www.geosci-model-dev.net/7/2157/2014/
https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-15-0721.1
https://science.sciencemag.org/content/272/5264/981
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014JD021678
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016GL071011
https://www.earth-syst-dynam.net/7/877/2016/
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016GL072418
https://www.atmos-chem-phys.net/18/6637/2018/
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_993927
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JD025508
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2017JD028017
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Can we implement a faster ozone parameterization?
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ERL 2018

https://iopscience.iop.org/article/10.1088/1748-9326/aae2be
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The machine learning parameterization shows potential
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Xt-1
     Temperature
     in all grid cells

Input features
Machine learning

    Fit regression function Y = f(X)

- linear: Ridge/Lasso regression
- nonlinear: Random Forest, Neural Network
- cross-validation on training set

Normaliza�on

Dimension
Reduc�on
    (PCA)

Output
Model

Apply mapping

to test data

Yt
Ozone mixing ratio
       in grid cell k

Temperature Ozone
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Xt-1
     Temperature
     in all grid cells

Input features
Machine learning

    Fit regression function Y = f(X)

- linear: Ridge/Lasso regression
- nonlinear: Random Forest, Neural Network
- cross-validation on training set

Normaliza�on

Dimension
Reduc�on
    (PCA)

Output
Model

Apply mapping

to test data

Yt
Ozone mixing ratio
       in grid cell k

Temperature Ozone
Simple and effective:

- Replaces both tracer transport and chemical
reaction solver.

- Requires little training data from expensive
simulations.

- Ridge regression performs well under
extrapolation.
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Ridge regression cost function:

JRidge,k =
N∑

t=1

Y (t)
k −

p∑
j=1

ckjX
(t−1)
j

2

+ λ
p∑

j=1
c2

kj

X = 1000 temperature modes of variability ≡ inputs
Y = Ozone mass mixing ratios in each grid cell

ckj , λ = coefficients (subject to optimization), regularization parameter
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The machine learning parameterization shows potential

Peer Nowack Machine learning parameterizations for ozone 9/16

Xt-1
     Temperature
     in all grid cells

Input features
Machine learning

    Fit regression function Y = f(X)

- linear: Ridge/Lasso regression
- nonlinear: Random Forest, Neural Network
- cross-validation on training set

Normaliza�on

Dimension
Reduc�on
    (PCA)

Output
Model

Apply mapping

to test data

Yt
Ozone mixing ratio
       in grid cell k

Temperature OzoneWhy temperature?

Forcing scenarios such as piControl/4xCO2: factors driving changes
in ozone are directly or indirectly correlated with temperature
(circulation, sunlight, water vapour, catalytic reactions...)

An extension to scenarios with CFCs etc appears feasible.

Nowack et al. ERL (2018)

https://iopscience.iop.org/article/10.1088/1748-9326/aae2be
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Xt-1
     Temperature
     in all grid cells

Input features
Machine learning

    Fit regression function Y = f(X)

- linear: Ridge/Lasso regression
- nonlinear: Random Forest, Neural Network
- cross-validation on training set

Normaliza�on

Dimension
Reduc�on
    (PCA)

Output
Model

Apply mapping

to test data

Yt
Ozone mixing ratio
       in grid cell k

Temperature OzoneSimple and effective:

Predicts ozone as a self-learned function of the climate state.

Replaces both tracer transport and chemical reaction system.

Requires little training data from expensive simulations (<10 years).

Ridge regression performs well under extrapolation→ climate change.

Nowack et al. ERL (2018)

https://iopscience.iop.org/article/10.1088/1748-9326/aae2be
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Parameterization for pre-industrial run: internal variability (I)

altitude: 23.9 km   latitude: 2.5N   longitude: 0E      R: 0.95      MSE ratio: 5.99 

altitude: 40.0 km   latitude: 2.5N   longitude: 0E      R: 0.92      MSE ratio: 2.75 

altitude: 45.8 km   latitude: 40N    longitude: 23W    R: 0.89      MSE ratio: 4.07O
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Parameterization for pre-industrial run: internal variability (II)

Kernel density estimates for ozone mixing ratios in three grid cells.

Comparison of the fixed climatological distributions to
interactive chemistry and the machine learning predictions.

See also Nowack, Ong et al. Climate Informatics (2019).
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https://spiral.imperial.ac.uk/bitstream/10044/1/75531/10/CI2019_paper_74.pdf


Introduction
Results

Conclusions

The ML regression also reproduces the spatial structure well
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The same applies to changes in ozone under 4xCO2
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Left: interactively modelled %-changes in ozone under 4xCO2. Right: the
machine learning model predicts those changes to within 5% almost everywhere.
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Model transferability: HadGEM3 to UKESM see Nowack, Ong et al. (2019)
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1) Re-center temperature field

2) Use new Xscaled as input

3) Gives YHadGEM-consistent

4) Define: YHadGEM-consistent = Y HadGEM + + Y ′

5) Substitute climatologies: YUKESM-consistent = Y UKESM + Y ′

Works already with 5 years of UKESM data (see linked publication).

https://spiral.imperial.ac.uk/bitstream/10044/1/75531/10/CI2019_paper_74.pdf
https://spiral.imperial.ac.uk/bitstream/10044/1/75531/10/CI2019_paper_74.pdf
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Take-home messages

• Stratospheric ozone is an important factor in climate
modelling.

• This is not reflected in many current climate model
configurations.

• A machine learning parameterization could pose an
effective alternative for including ozone in simulations.

• Lessons learned could be useful for other
parameterization schemes (ocean, cloud/convection,
carbon cycle).
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Next steps

• Fully coupled implementation in UKESM1. The initial
version appears to be stable over long timescales.

• Comparison to other computationally cheaper
modelling alternatives such as linearized chemistry
schemes; cf. Meraner et al. (2020).

• Method development: other algorithms/other inputs.
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019MS002003
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