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1. Motivation --- Solar Activity
Solar Flares: 
1. The most powerful eruptions ----- emit 

energies up to 1032 ergs 

2. Energetic particles from flares (e.g., Miller et 
al. 1997) 
• Solar Energetic Particle (SEP) Events
• Solar Radio Bursts
• Auroras

3. Radiation crosses the entire electromagnetic 
spectrum from radio to gamma rays 
• x-rays and gamma rays require 

telescopes in space
• radio and optical emissions can 

penetrate the Earth's atmosphere & be 
observed with telescopes on the Earth.

Coronal Mass Ejections 
(CMEs)

Sunspots Prominences

Solar Flares
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• high brightness 
temperature TB; 

• short-eruptive time 
scale; 

• narrow frequency 
bandwidth;

• strong polarization.

[Aschwanden and 
Benz, 1997; Barta et 
al., 2008; Benz et al., 
2009]



1. Motivation
Radio Emission 

Mechanisms 
during Solar Fares 

[Aschwanden, 2002]

• high brightness 
temperature TB; 

• short-eruptive time 
scale; 

• narrow frequency 
bandwidth;

• strong polarization. 



• Incoherent emission
• the total emission of a collection of elections == summing over the emission by single electron 
• Types: e.g., synchrotron radiation, bremsstrahlung radiation

• Coherent emission
• involve some plasma instabilities, collective (kinetic) plasma radiation processes   

• high brightness temperature TB; 
• short-eruptive time scale; 
• narrow frequency bandwidth;
• strong polarization, e.g., solar radio bursts [Aschwanden and Benz, 1997; Barta et al., 2008; Benz et al., 

2009]

• Types: plasma emission, electron cyclotron maser emission, pulsar radio emission...

1. Motivation

[Melrose, 2017]



Mechanism 1:

Plasma Emission (Ginzburg and Zheleznyakov 1958; 
Melrose, 1985; Robinson and Cairns, 1998):

a non-linear multi-stage process: beam 
instability + three-wave interaction processes
Langmuir waves (L)
backward Langmuir waves (L' )
sound waves (S)
transverse electromagnetic waves (T) 

Driver ------ a positive gradient 
( u//*df(u//)/du// > 0) in the electron 
distribution function
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f(u//)

u//

 u//*df(u//)/du// > 0

Electron
Beam

(ωpe ---- plasma frequency) 

(Ganse et al, 2012)



Mechanism 2:

Electron Cyclotron Maser Emission (ECME) 
----- Linear instability (Wild, 1985; C. S. Wu, 2012; D. J. Wu, 2014; 
Wu et al., 2014):

Two necessary conditions:

(1) free energy --- positive perpendicular velocity gradient 
( df(u⊥)/du⊥ > 0, e.g., ring distribution, loss cone 
distribution) 

(2) local electron cyclotron frequency ωce > plasma frequency 
ωpe (ωce / ωpe ∝ B2/ne, e.g., density cavity) to satisfy the 
escape condition 

ECME ----- auroral kilometric radiation (AKR) in 
the Earth (e.g.,  Strangeway et al., 2001; Louarn, 2006, Melrose, 

2017).
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Ring Distribution

f(u⊥)

u⊥

df(u⊥)/du⊥ > 0



Properties of wave excitation driven by energetic ring-beam electrons in 
the environment of solar corona?

• Intensity of excited waves

• Polarization

1.  Motivation

(Lee et al., 2011)
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ring distribution via 
therical analysis and 2D 

PIC simulation with 

ring-beam distribution via 
1D PIC simulation

ring-beam distribution, in 
dependence on the energy and 

pitch angle of the energetic ring-
beam electrons via 2.5D PIC 

simulation



Ring-Beams

Reconnection

Ring-Beams

Emission differences along the 
trajectory of the energetic 

ring-beam electrons
|||

varying the ring-beam electron 
density and ambient

magnetic field strength
|||

2.5D PIC simulations 
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2. Method --- Fully-kinetic PIC Simulation 

Fully-kinetic PIC Code:

1. Evolutions of the particles (electrons & ions) and 
electromagnetic fields are self-consistent ----- 
feedback

2. collisionless ---- dissipation via wave-particle 
interactions

3. Code: ACRONYM (Advanced Code for Relativistic Objects, 
Now with Yee-Lattice and Macroparticles, Kilian et al., 2012, 
http://plasma.nerd2nerd.org/)



2 Initial Setup
• (1024, 1024) grid points, periodic boundaries

• 1000 electrons/cell (ntotal fixed), homogeneous, neutral 
charge

• ωpe fixed; mp:me  = 1836
• background magnetic field ----- uniform ---- along X-axis

• uth// =uth⊥= 0.025c
• uth-background = 0.05c

• γ=[1+(urb⊥
2 +urb//

2)/c2]1/2=1.2~100keV
• urb⊥ /urb//= tan(300)

• neutral current ---- ubackground//=urb//*nrb/nbackground

====================================
====================================

• nrb: ntotal = 5%, 10%, 20%, 30%, 40%, 50%  
(with ωce:ωpe = 5) 

• ωce:ωpe = 0.2, 0.3, 0.5, 1, 2, 3, 5 (nrb: ntotal = 5%) [Lee et al., 2011]



Dispersion 
Relation in the 

Cold Plasma

2. Wave modes in cold plasma 



3. nrb: ntotal Results --- dispersion relation spectrum 

 (nrb: ntotal = 30% )



3. nrb: ntotal Results --- dispersion relation spectrum 

 (nrb: ntotal = 5%)



Dispersion Relation in 
the Cold Plasma

+

3.1 nrb: ntotal Results --- Intensity of Different wave modes  

[comisel et al, 2013]



 

3.1 nrb: ntotal Results --- Intensity of Different wave modes  



3.1 nrb: ntotal Results ---  Intensity Anisotropy



3.1 nrb: ntotal Results --- Polarization

 (nrb: ntotal =5%)

Polarization Vector (defined with respect to 
the wave propagation vector, in order to compare 
with observations (Stix, 1992)):
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Polarization 
basis vector



3.1 nrb: ntotal Results --- Polarization (escaping waves)

Circular Polarization Degree 
(CPD) leftright

leftrightP










3.1 nrb: ntotal Results --- Spectrogram (escaping waves)
ωpe = 0.2ωnorm, ωce = ωnorm



3.1 nrb: ntotal Results --- Spectrogram (escaping waves)
ωpe = 0.2ωnorm, ωce = ωnorm



3.1 nrb: ntotal Results --- Electron energy distribution  

Double pow-law distribution in the high energy tail (γ − 1 > 0.1 
~ 50 keV --------- Wave-particle Interaction



3.2 ωce:ωpe Results --- Dispersion Relation



when ωce>ωpe (ωce/ωpe = 5)
• Intensity of each wave mode is quite anisotropic, this anisotropy decreases when 

the ring-beam electron population increase
• Whistler mode waves contain more energy than other modes
• CPDs and spectrogarms of escaping waves strongly depend on their propagation 

directions and number density ratio nrb: ntotal, they will be predominantly left-
handed polarized over a wide range of propagation directions when energetic ring-
beam electron population is denser ---- the diversity in the SRB (e.g, spike bursts 
Fleishman & Mel’nikov 1998) polarization observations

• Wave-particle Interaction

when ωce<ωpe 
• Excitation of higher-level harmonic of both ωpe and ωce, but non-escaping 
• Very weak excitation of escaping waves

4. Conclusion



Thank you for your attention!


