THE ASTROPHYSICAL JOURNAL, 891:92 (20pp), 2020 March 1 © 2020. The American Astronomical Society. All rights reserved.

Coherent emission driven by energetic ring-beam electrons in the solar corona

via 2.5D PIC Simulations

Xiaowei Zhou^{1,3}, Patricio Munoz Sepulveda², Prof. Jörg Büechner^{2,3}, and Prof. Siming Liu¹

Purple Mountain Observatory (PMO), Nanjing, China
 Center for Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany
 Max Planck Institute for Solar System Research (MPS), Goettingen, Germany

Outline

1. Motivation

2. Method

3. Results

4. Conclusion

1. Motivation --- Solar Activity

Coronal Mass Ejections (CMEs)

1997/04/07 14:97 UT

Prominences

Solar Flares:

- 1. The most powerful eruptions ----- emit energies up to 10³² ergs
- 2. Energetic particles from flares (e.g., Miller et al. 1997)
 - Solar Energetic Particle (SEP) Events
 - Solar Radio Bursts
 - Auroras
- 3. Radiation crosses the entire electromagnetic spectrum from radio to gamma rays
 - x-rays and gamma rays require telescopes in space
 - radio and optical emissions can penetrate the Earth's atmosphere & be observed with telescopes on the Earth.

 A solar radio burst is a structure in frequency space that changes with time. Type I, II, III, IV, V + subtypes.

short-eruptive time scale;

high brightness

temperature T_B;

- narrow frequency bandwidth;
- strong polarization.

[Aschwanden and Benz, 1997; Barta et al., 2008; Benz et al., 2009]

Radio Emission	Emission mechanism	Frequency	Source/Exciter			
	(1) Incoherent radio emission:					
Mechanisms	(1a) Free-free emission (bremsstrahlung)	(1a) Free-free emission (bremsstrahlung) $\nu \gtrsim 1 \text{ GHz}$				
riceria iisiiis	 Microwave postbursts 		Thermal plasma			
during Solar Far	es					
	(1b) Gyroemission	(1b) Gyroemission $\omega = s\Omega_e$				
[Aschwanden, 2002]	Gyroresonance emission	Gyroresonance emission $(s = 1, 2, 3, 4)$				
	Gyrosynchrotron emission	$(s \approx 10 - 100)$	Mildly relativistic electrons			
	 Type IV moving 		Trapped electrons			
	 Microwave type IV 		Trapped electrons			
high brightnood	(2) Coherent radio emission:					
	(2a) Plasma emission	$\nu_{pe} = 9000\sqrt{n_e}$	Electron beams			
temperature r _B ,	 Type I storms 	53 - 5 5 -X	Langmuir turbulence			
	 Type II bursts 		Beams from shocks			
short-eruptive time	 Type III bursts 		Upward propagating beams			
scale;	– Reverse slope (RS) bursts		Downward propagating beams			
-	 Type J bursts 		Beams along closed loops			
• parrow frequency	 Type U bursts 		Beams along closed loops			
handwidth:	 Type IV continuum 		Trapped electrons			
Banawidth,	– Type V		Slow electron beams			
 strong polarization. 	(2b) Electron-cyclotron maser:	$\omega = s\Omega_e/\gamma + k_{ }v_{ }$	Losscones			
	- Decimetric ms spike bursts	ensector on the Hill	Losscones			

Incoherent emission

- the total emission of a collection of elections == summing over the emission by single electron
- Types: e.g., synchrotron radiation, bremsstrahlung radiation

Coherent emission

- involve some plasma instabilities, collective (kinetic) plasma radiation processes
 - high brightness temperature T_B;
 - short-eruptive time scale;
 - narrow frequency bandwidth;
 - strong polarization, e.g., solar radio bursts [Aschwanden and Benz, 1997; Barta et al., 2008; Benz et al., 2009]
- Types: plasma emission, electron cyclotron maser emission, pulsar radio emission...

[Melrose, 2017]

Mechanism 1:

Plasma Emission (Ginzburg and Zheleznyakov 1958; Melrose, 1985; Robinson and Cairns, 1998):

a non-linear multi-stage process: beam instability + three-wave interaction processes Langmuir waves (L) backward Langmuir waves (L') sound waves (S) transverse electromagnetic waves (T)

Driver ----- a positive gradient ($u_{//*}df(u_{//})/du_{//} > 0$) in the electron distribution function (ω_{pe} ---- plasma frequency) $L \rightarrow L' + S$ $L \rightarrow S + T(\omega_{pe})$ $L + L' \rightarrow T(2\omega_{pe})$ (Ganse et al, 2012)

Properties of wave excitation driven by energetic ring-beam electrons in the environment of solar corona?

- Intensity of excited waves
- Polarization

$$F_{rb}(u_{\parallel}, u_{\perp}) = F_{rb\parallel}(u_{\parallel})F_{rb\perp}(u_{\perp})$$

$$F_{rb\parallel}(u_{\parallel}) = \frac{1}{\sqrt{2\pi}u_{th\parallel}} \exp\left[-\frac{(u_{\parallel} - u_{rb\parallel})^2}{2u_{th\parallel}^2}\right]$$

$$F_{rb\perp}(u_{\perp}) = \frac{1}{2\pi u_{th\perp}^2 A_{\perp}} \exp\left[-\frac{(u_{\perp} - u_{rb\perp})^2}{2u_{th\perp}^2}\right]$$

$$A_{\perp} = \exp\left[-\frac{u_{rb\perp}^2}{2u_{th\perp}^2}\right] + \sqrt{\frac{\pi}{2}}\frac{u_{rb\perp}}{u_{th\perp}} \operatorname{erfc}\left[-\frac{u_{rb\perp}}{\sqrt{2}u_{th\perp}}\right]$$

Emission differences along the trajectory of the energetic ring-beam electrons varying the ring-beam electron density and ambient magnetic field strength 2.5D PIC simulations

2. Method --- Fully-kinetic PIC Simulation

Fully-kinetic PIC Code:

- Evolutions of the particles (electrons & ions) and electromagnetic fields are self-consistent ----feedback
- 2. collisionless ---- dissipation via wave-particle interactions
- 3. Code: ACRONYM (Advanced Code for Relativistic Objects, Now with Yee-Lattice and Macroparticles, Kilian et al., 2012, http://plasma.nerd2nerd.org/)

2 Initial Setup

 $F_{rb}(u_{\parallel}, u_{\perp}) = F_{rb\parallel}(u_{\parallel})F_{rb\perp}(u_{\perp})$ $F_{rb\parallel}(u_{\parallel}) = \frac{1}{\sqrt{2\pi}u_{tb\parallel}} \exp\left[-\frac{(u_{\parallel} - u_{rb\parallel})^2}{2u_{tb\parallel}^2}\right]$ $F_{rb\perp}(u_{\perp}) = \frac{1}{2\pi u_{t+}^2 A_{\perp}} \exp\left[-\frac{(u_{\perp} - u_{rb\perp})^2}{2u_{t+}^2}\right]$ $A_{\perp} = \exp\left[-\frac{u_{rb\perp}^2}{2u_{\perp}^2}\right] + \sqrt{\frac{\pi}{2}} \frac{u_{rb\perp}}{u_{tb\perp}} \operatorname{erfc}\left[-\frac{u_{rb\perp}}{\sqrt{2}u_{tb\perp}}\right]$ 0.4 u_{d||} 0.2 В, u_⊥2 [c] -0.2 -0.4 0.2 0.8 0.6 u_{_1} [c] ⁰ 0.4 0.2 u_{||} [c] [Lee et al., 201^{2} -0.4 -0.2

- (1024, 1024) grid points, periodic boundaries
- 1000 electrons/cell (n_{total} fixed), homogeneous, neutral charge
 - ω_{pe} fixed; $m_p:m_e = 1836$
- background magnetic field ----- uniform ---- along X-axis
 - $u_{th//} = u_{th\perp} = 0.025c$
 - $u_{th-background} = 0.05c$
 - $\gamma = [1 + (u_{rb\perp}^2 + u_{rb//}^2)/c^2]^{1/2} = 1.2 \sim 100 \text{keV}$
 - $u_{rb\perp} / u_{rb//} = tan(30^{\circ})$
 - neutral current ---- u_{background//}=u_{rb//*}n_{rb}/n_{background}

• n_{rb} : $n_{total} = 5\%$, 10%, 20%, 30%, 40%, 50% (with ω_{ce} : $\omega_{pe} = 5$) ω_{ce} : $\omega_{pe} = 0.2$, 0.3, 0.5, 1, 2, 3, 5 (n_{rb} : $n_{total} = 5\%$)

2. Wave modes in cold plasma

Dispersion Relation in the Cold Plasma

3. n_{rb}: n_{total} Results --- dispersion relation spectrum

 $(n_{rb}: n_{total} = 30\%)$

-8.0	-7.0	-6.0	-5.0	-4.0	-3.0	-2.0	-1.0	0.0	1.0	2.0
— V	Vhistler / Langmuir / Lower Hybrid			— Z mode / Upper Hybr	id		— L-O mode			— R-X mode

$$\omega_{norm} = 5.0\omega_{pe}$$

3. n_{rb}: n_{total} Results --- dispersion relation spectrum

 $(n_{rb}: n_{total} = 5\%)$

-8.0	-7.0	-6.0	-5.0	-4.0	-3.0	-2.0	-1.0	0.0	1.0	2.0
— Whi	stler / Langmuir / Lower Hybrid			— Z mode / Upper Hybr	rid		— L-O mode			— R-X mode

$$\omega_{norm} = 5.0\omega_{pe}$$

3.1 n_{rb}: n_{total} Results --- Intensity of Different wave modes

3.1 n_{rb}: n_{total} Results --- Intensity of Different wave modes

3.1 n_{rb}: n_{total} Results --- Intensity Anisotropy

3.1 n_{rb}: n_{total} Results --- Polarization

Polarization Vector (defined with respect to the wave propagation vector, in order to compare with observations (Stix, 1992)):

(n_{rb}: n_{total} =5%)

3.1 n_{rb}: n_{total} Results --- Polarization (escaping waves)

Circular Polarization Degree (CPD)

3.1 n_{rb}: n_{total} Results --- Spectrogram (escaping waves)

$\omega > \omega_{pe}$ and $|\omega / k| > c$

3.1 n_{rb}: n_{total} Results --- Spectrogram (escaping waves)

3.1 n_{rb}: n_{total} Results --- Electron energy distribution

 $\omega_{norm} t = 0.000$

 $\omega_{norm} t = 1275.000$

Double pow-law distribution in the high energy tail (γ – 1 > 0.1 ~ 50 keV ----- Wave-particle Interaction

3.2 ω_{ce} : ω_{pe} Results --- Dispersion Relation

 $\omega_{norm} = 5.0\omega_{pe}$

4. Conclusion

when $\omega_{ce} > \omega_{pe} (\omega_{ce} / \omega_{pe} = 5)$

- Intensity of each wave mode is quite anisotropic, this anisotropy decreases when the ring-beam electron population increase
- Whistler mode waves contain more energy than other modes
- CPDs and spectrogarms of escaping waves strongly depend on their propagation directions and number density ratio n_{rb}: n_{total}, they will be predominantly lefthanded polarized over a wide range of propagation directions when energetic ringbeam electron population is denser ---- the diversity in the SRB (e.g, spike bursts Fleishman & Mel'nikov 1998) polarization observations
- Wave-particle Interaction

when $\omega_{ce} < \omega_{pe}$

- Excitation of higher-level harmonic of both ω_{pe} and ω_{ce} , but non-escaping
- Very weak excitation of escaping waves

Thank you for your attention!