

Evaluation and adjustment of description of denitrification in the CoupModel, DNDC and DeNi model based on N₂ and N₂O laboratory mesocosm incubation system measurements

Grosz, B.¹, Well, R.¹, Dechow, R.¹, Köster, J, R.¹, Khalil, M. I.⁵, Merl, S.¹, Rode, A.⁴, Ziehmer, B.³, He, H.²

¹Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany
²University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg, Sweden
³Ministerium für Umwelt, Energie, Ernährung und Forsten von Rheinland -Pfalz Mainz, Germany
⁴Ingenieurbüro Landwirtschaft und Umwelt (IGLU), Göttingen, Germany
⁵UCD School of Biology & Environmental Science, University College Dublin, and School of Applied Sciences & Technology, Prudence College Dublin, Ireland

Balázs Grosz balazs.grosz@thuenen.de

Introduction

2 04.05.2020

Denitrification

an anaerobic key process by microbes where the NO_3^- is step-by-step reduced and emitted as NO, N_2O and finally N_2 gas from the soil.

Biogeochemical models

models can be important tools to predict mitigation effects and help to develop climate smart mitigation strategies.

Necessary dataset

data suitable to validate denitrification models are still scarce due to previous technical and/or methodical limitations of measuring N₂ fluxes, but large data-sets are needed in view of the extreme spatio-temporal heterogeneity of denitrification.

Dataset: two mesocosm experiments Hattorf (7 treatments) and Fuhrberg (2 treatments) soils

	Clay	Silt	Sand	Bulk density	NO ₃ -	NH_4^+	рН	Total N	Organic C	C/N ratio
	[%]	[%]	[%]	[g/cm ³]	[mg N kg ⁻¹]	[mg N kg ⁻¹]	(CaCl2)	[%]	[%]	
Fu	3.1	5.9	91.0	1.5	17.8	1.4	4.8	0.1	2.1	15.5
На	15.2	77.6	7.2	1.4	12.73	1.27	6	0.1	1.05	10

Table 1: Physical and chemical data of the top soil of the Fuhrberg (5 to 20 cm depth) and Hattorf(0 to 10 cm depth) soils

	Hattorf					Fuhrberg		
	I.	П	Ш	IV	V	VI	VII	
Added N (KNO₃) [mg N / kg dry soil]	20	10	40	20	20	20	20	50
atom % ¹⁵ N in KNO ₃	60	98	60	60	60	60	60	60
Thickness of soil layer (cm)	25	25	25	25	25	25	25	10
Bulk density	1.4	1.4	1.4	1.46	1.52	1.4	1.4	1.5
grav. water content	0.25	0.27	0.27	0.25	0.25	0.27	0.30	0.231*
WFPS (%)	73.0	80.0	80.0	80	88	80.0	90.0	80.0*

Table 2: Initial settings of the laboratory experiments (fixed for Fu soil and treatments I to VII of Hasoil)

04.05.2020

3

Dataset: two mesocosm experiments Hattorf (7 treatments) and Fuhrberg (2 treatments) soils

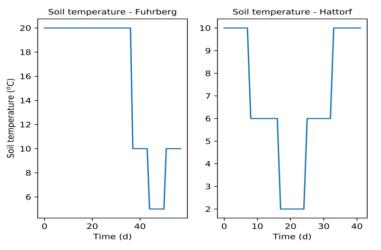


Figure 1: Soil temperature of the mesocosm experiments

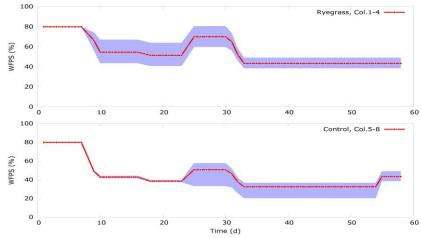


Figure 2: the change of the WFPS of the 8 mesocosm experiments (4 parallel experiment for 2 treatments: C1-4 with and C5-8 without ryegrass) – Furhberg site

Experiment (variants)	NO ₃ ⁻ -N und NH ₄ +-N in the unfertilized soil [mg N / kg dry soil]	Added N (KNO ₃) [mg N / kg dry soil]	Calculated ¹⁵ N enrichment (at%) of the NO ₃ ⁻ in the soil	
Ha (II)	14	10	41	
Ha (I, IV, V, VI, VII)	14	20	35	
Ha (III)	14	40	45	
Fu	16	50	60	

Table 3: Initial NO₃⁻-N content, NO₃⁻-N fertilization and calculated ¹⁵N enrichment of NO₃⁻ after fertilization in the Ha and Fu experiments

04.05.2020

4

Hattorf soil - measured and modeled fluxes

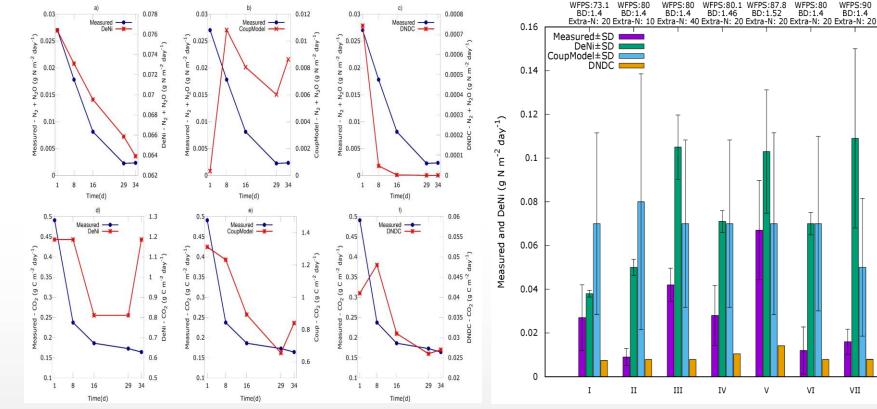


Figure 3: An example for the measured and modeled (DeNi, CoupModel and DNDC) $N_2+N_2O(a, b, c)$ and $CO_2(d, e, f)$ fluxes of the Ha experiment/VI_{N20_80%_1.4}

Figure 4: Measured and modeled cumulated N₂+N₂O fluxes of Ha treatments

VII

WFPS:90

BD:1.4

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

CoupModel and DNDC (g N m^{-2} day $^{-1}$)

Balázs Grosz - DASIM Project EGU 2020

The changes of the magnitude and the response of the modeled and measured values. The change is equal if the ratio is 1; The modeled values moved from the compared measured values: <0; The modeled values moved to the compared measured values: >0; Ratio calculation (N_2+N_2O) (example): $((I_{Mod}-II_{Mod})/I_{Mod})/((I_{Meas}-II_{Meas})/I_{Meas})$

CoupModel/Measured	II _{N10_80%_1.4}	III _{N40_80%_1.4}	IV _{N20_80%_1.46}	V _{N20_88%_1.52}	VI _{N20_80%_1.4}	VII _{N20_90%_1.4}
I _{N20_73%_1.4}	-0.21	0	0	0	0	0.70
II _{N10_80%_1.4}	-	-0.03	-0.06	-0.02	-0.38	-0.48
III _{N40_80%_1.4}	-	-	0	0	0	0.46
IV _{N20_80%_1.46}	-	-	-	0	0	0.67
V _{N20_88%_1.52}	-	-	-	-	0	0.38
VI _{N20_80%_1.4}	-	-	-	-	-	-0.86
DeNi/Measured	II _{N10_80%_1.4}	III _{N40_80%_1.4}	IV _{N20_80%_1.46}	V _{N20_88%_1.52}	VI _{N20_80%_1.4}	VII _{N20_90%_1.4}
I _{N20_73%_1.4}	-0.47	3.17	23.45	1.15	-1.52	-4.59
II _{N10_80%_1.4}	-	0.30	0.20	0.16	1.20	1.52
III _{N40_80%_1.4}	-	-	0.97	-0.03	0.47	-0.06
IV _{N20_80%_1.46}	-	-	-	0.32	0.02	-1.25
V _{N20_88%_1.52}	-	-	-	-	0.39	-0.08
VI _{N20_80%_1.4}	-	-	-	-	-	1.67
DNDC/Measured	II _{N10_80%_1.4}	III _{N40_80%_1.4}	IV _{N20_80%_1.46}	V _{N20_88%_1.52}	VI _{N20_80%_1.4}	VII _{N20_90%_1.4}
I _{N20_73%_1.4}	-0.08	0.10	10.80	0.60	-0.10	-0.16
II _{N10_80%_1.4}	-	0	0.16	0.12	0	0.02
III _{N40_80%_1.4}	-	-	-0.99	1.34	0	-0.02
IV _{N20_80%_1.46}	-	-	-	0.25	0.43	0.56
V _{N20_88%_1.52}	-	-	-	-	0.54	0.57
VI _{N20_80%_1.4}	-	-	-	-	-	0.04

04.05.2020

6

Fuhrberg soil - measured and modeled fluxes

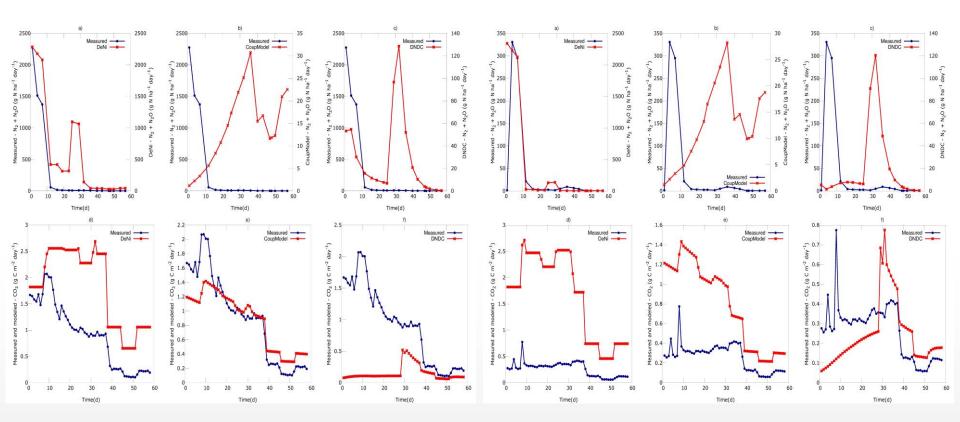


Figure 5: The measured and modeled N₂, N₂O and CO₂ fluxes of the ryegrass treatment of the Fuhrberg soil (Core 1-4)

Figure 6: The measured and modeled (DeNi and CoupModel) N_2 , N_2O and CO_2 fluxes of the control treatment of the Fuhrberg soil (Core 5-8)

Fuhrberg soil - measured and modeled (CoupModel, DeNi, DNDC) average, cumulative N_2 , N_2O and N_2+N_2O , CO_2 fluxes (g N ha⁻¹ and g C m⁻²) and product ratios

		Cores 1-4 (ryegrass)	Cores 5-8 (control)	
	Measured	4818	638.5	
	DeNi	4351	2460	
N ₂ O	CoupModel	81.90	70.15	
	DNDC	507.9	345.4	
	Measured	489.8	52.63	
NI	DeNi	6264	4607	
N ₂	CoupModel	170.7	155.8	
	DNDC	0.022	0.019	
	Measured	5308	691.1	
	DeNi	10615	7067	
N ₂ +N ₂ O	CoupModel	252.6	226.0	
	DNDC	507.9	345.4	
	Measured	0.9077	0.924	
	DeNi	0.410	0.348	
$N_2O/(N_2+N_2O)$	CoupModel	0.324	0.310	
	DNDC	0.999	0.999	
	Measured	52.5	15.2	
CO ₂	DeNi	106.1	95.4	
	CoupModel	50.848	46.3	
	DNDC	8.97	14.14	

8

04.05.2020

Conclusion

- The results show that the models did not calculate the same magnitude of the measured values. The DeNi model overestimated and the DNDC and CoupModel underestimated the measured fluxes.
- In several cases the temporal patterns of the measured and the modeled emission were similar.
- The models have limitations in modeling the decomposition of added easily available carbon. Moreover, some processes were missing (e.g. enzymatic effect on the denitrification, modeling of the hot spot effect) or not properly described (e.g. ansvf, product ratio calculation, diffusion).
- The patterns of the modeled values sometimes similar as the measured. It might mean that several processes are described well by the existing models but some parameters should be adjusted and reparametrized based on the new and/or better measurement results and some of the processes are still not represented at the models. The not yet described processes might be the key for the better prediction of the denitrification processes.

Conclusion

- Most cases of over- or underestimations by the models could be explained by certain deficiencies of the models or of the experimental data. The temporal resolution of some experimental data was found to be insufficient for proper model evaluation. Further model evaluation will include testing the DASIM data sets and adjustment of further model parameters.
- The ansvf estimations of the CoupModel were obtained showing that ansvf was almost constant. This is not plausible since the parameters affecting ansvf, i.e. diffusivity and O₂ consumption, must have been highly variable since soil moisture and respiration exhibited large differences between treatments and experimental phases. The underestimation of N₂+N₂O fluxes by CoupModel could therefore result from the inappropriate calculation of ansvf.

Thank you for your attention!

11 04.05.2020

