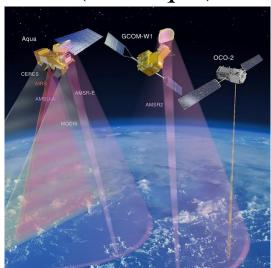


Estimates of anthropogenic CO₂ emissions from satellite and ground based measurements

<u>Yury Timofeyev</u>^{1*}, G. Nerobelov¹, S. Smyshlyaev², I. Berezin¹, Y. Virolainen¹, M. Makarova¹, A. Poberovsky¹, A. Polyakov¹, S. Foka¹

¹The Department of Atmospheric Physics, Faculty of Physics, Saint-Petersburg State University (SPBU), Saint-Petersburg, Russia ²Department of Meteorological Forecasting, Russian State Hydrometeorological University (RSHU), Saint-Petersburg, Russia *y.timofeev@spbu.ru

3 – remote ground-based, 4- local ground-based)


How to estimate anthropogenic CO₂ emissions?

CO₂ remote measurement systems

Satellite measurements

(errors in range 30-50%)

- OCO-2
- GOSAT
- SCIAMACHY (sat. EnviSat)
- AIRS (sat. Aqua)

Model of satellite measurements with OCO-2 on the right and AIRS (Aqua) on the left Orig.:https://ocov2.jpl.nasa.gov/galleries/spacecraft/

Ground-based measurements

(errors in range 20-30%)

• FT-IR (Fourier-Transform Infrared) spectrometers

Bruker FT-IR spectrometers EM27/SUN (left) and 125HR (right)

Orig.: https://pdf.medicalexpo.com/pdf/bruker-optik-gmbh/em-27-sun-series-atmosphericmeasurements/96471-173355.html; https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/OpticalSpectrospcopy/FT-IR/IFS125/AN/AN120_Atmospheric_applications_IFS125HR.pdf

Motivation and aim

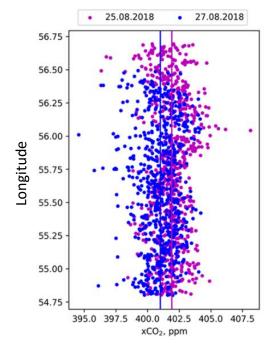
Motivation

- Studying of CO₂ variations in the atmosphere is of a big importance since it is main anthropogenic greenhouse gas;
- The relatively high spatial resolution of a number of ground-based and satellite instruments allows to study spatial and temporal CO₂ variations more accurately;
- That makes possible to estimate CO_2 anthropogenic emissions from different cities.

Aim

 To demonstrate comparison of CO₂ anthropogenic emissions retrieved using groundbased and satellite measurements and emissions obtained by the bottom-up method for the territory of St. Petersburg.

Retrieving of CO₂ anthropogenic emissions using satellite measurements


- OCO-2 data for the period 2014-2018 near the territories of Moscow and St. Petersburg (Russia)
- 2. Using simple **box model** (1) to retrieve **CO₂ anthropogenic emissions**

$$F_a = \frac{\Delta T C_{gas} * \overline{V}}{L} \tag{1}$$

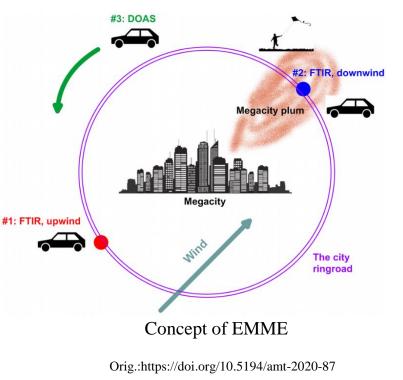
 F_a -emissions of the gas per units of area and time; ΔTC_{gas} -a difference between total column content of the gas in a clean and polluted air masses;

- \overline{V} average wind speed;
- \mathbf{L} path of air mass, driven by the wind speed.

Latitudinal distribution of XCO_2 measured by OCO-2 for the clean (blue points) and polluted (pink points) air in Moscow, 25 and 27 Aug 2018

Orig.: Timofeev Yu.M., Berezin I.A., Virolainen Ya.A., Poberovsky A.V., Makarova M.V., Polyakov A.V. Estimates of anthropogenic CO2 emissions for Moscow and St. Petersburg based on OCO-2 satellite measurements. // Optika Atmosfery i Okeana. 2020. V. 33. No. 04. P. 261–265

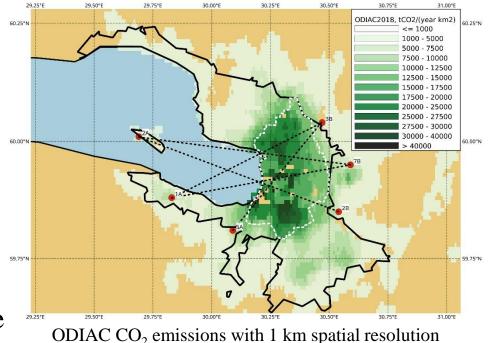
Retrieving of CO₂ anthropogenic emissions using satellite measurements


Estimation of CO₂ anthropogenic emissions in St. Petersburg and Moscow

	CO_2 emissions,	CO_2 emissions,	CO_2 emissions,
City	tCO ₂ /km ²	ktCO ₂ /km ²	MtCO ₂ per year
	per day	per year	per city`s area
St. Petersburg (OCO-2)	74–80	27–29	38 - 41
St. Petersburg (Bottom-up, 2015)	58	21	30
Moscow (OCO-2)	123–186	45–68	112 - 170

Emission Monitoring Mobile Experiment (EMME) St. Petersburg, Mar-Apr 2019

- 1. Two portable FT-IR spectrometers Bruker EM27/SUN were used to estimate total column amount of CO_2 at upwind (clean air) and downwind (polluted air) locations on the opposite sides of the city;
- 2. Using simple **box model** (1) to retrieve **CO₂ anthropogenic emissions;**
- 3. Estimations of **integral** anthropogenic CO_2 emissions from the territory of **St. Petersburg** using various sources of CO_2 anthropogenic emissions data.


Estimation of CO₂ anthropogenic emissions in St. Petersburg per 1 km²

Source of data	CO ₂ emissions, ktCO ₂ /km ² per year	
EMME (2019)	89±28	
OCO-2 (2014-2018)	27–29	
Bottom-up (2015)	21	

Correction of ODIAC data using EMME measurements

- 1. Using simple **box model** (1) to retrieve ΔTC_{CO2} from ODIAC data base of **CO2 fossil fuel emissions** with **1 km spatial resolution** for 2018 results along paths of EMEE measurements (dashed lines on the picture);
- 2. Calculating correction parameter by comparing EMME and ODIAC ΔTC_{CO2} ;
- **3.** Correction of ODIAC results by multiplying them with the correction parameter (approximately 1.935).

ODIAC CO₂ emissions with 1 km spatial resolution for the territory of St. Petersburg in 2018

Red dots on the picture – sites of EMME measurements which were used in retrieving ΔTC_{CO2} from ODIAC

Estimation of integral CO₂ anthropogenic emissions from the territory of St. Petersburg

Source of data	CO ₂ emissions, MtCO ₂ / year	
Corrected ODIAC (2019)	65	
CAMS (2018)	67	
Bottom-up (2015)	30	

Concluding remarks

Our measurements in **2019** for the territory of **St. Petersburg** showed:

- **Bottom-up** CO₂ anthropogenic emission estimation for **St. Petersburg** is **lower** than emissions retrieved using
 - 1. The satellite OCO-2 measurements (approximately in 1.3 times);
 - 2. The **ground-based** measurements obtained during EMME campaign (more than in **3-4 times**).
- The corrected ODIAC CO₂ emission estimation has good agreement with CAMS data for the territory of St. Petersburg (65.3 vs 66.8 MtCO₂/ year);
- The corrected ODIAC CO₂ emission estimation is almost in 2 times higher than bottom-up retrieval (65.3 vs.29.6 MtCO₂/ year).

References

- 1. Timofeev Yu.M., Berezin I.A., Virolainen Ya.A., Poberovsky A.V., Makarova M.V., Polyakov A.V. Estimates of anthropogenic CO2 emissions for Moscow and St. Petersburg based on OCO-2 satellite measurements. // Optika Atmosfery i Okeana. 2020. V. 33. No. 04. P. 261–265
- M.V. Makarova, F. Hase, D.V. Ionov, T. Blumenstock, T.Warneke, S.C. Foka, Y. A. Virolainen, V.S. Kostsov, C.Alberti, M. Frey, A.V. Poberovskii, Y. M. Timofeyev, K.A. Volkova, N.A. Zaitsev, E.Y. Biryukov, S.I. Osipov, B. K. Makarov, A.V. Polyakov, N.N. Paramonova, V.M. Ivakhov, H.H. Imhasin, E. F. Mikhailov. Emission Monitoring Mobile Experiment (EMME): an overview and first results of the St. Petersburg megacity campaign-2019. Atmos. Chem. Phys. https://doi.org/10.5194/amt-2020-87

Thank you for your attention!

