A new spatially distributed Added Value Index for Regional Climate Models:

the EURO-CORDEX and CORDEX-CORE highest resolution ensembles

J. M. Ciarlo`, E. Coppola, A. Fantini, F. Giorgi, X. Gao, Y. Tong, R. H. Glazer, J. A. Torres Alavez, T. Sines, E. Pichelli, F. Raffaele, S. Das, M. Bukovsky, M. Ashfaq, E.-S. Im, T. Nguyen-Xuan, C. Teichmann, A. Remedio, T. Remke, K. Bülow, T. Weber, L. Buntemeyer, K. Sieck, D. Rechid, D. Jacob

Where is the Added Value?

Proposed Method

- 1. Interpolate to common grid [ex. RCM]
- 2. Calculate distribution for each cell
 - Independent number of bins
 - Identical bin size [1 mm/day]
- 3. Calculate sum of absolute differences
- 4. Compare the differences
 - Empty bin \rightarrow AV +1

Relative Distribution Difference

$$D_{MOD} = \frac{\sum |N_M - N_O| \Delta v}{\sum N_O \Delta v}$$

for EACH grid-cell!

$$AV = D_{GCM} - D_{RCM}$$

European Composite Observations (ECO)

Data-set	Region	Resolution	Period used	Reference
EURO4M	Alps	5 km	1995-2008	lsotta et al. (2014)
Spain02	Spain	0.11°	1995-2010	Herrera et al. (2015)
SAFRAN	France	8 km	1995-2013	Vidal et al. (2010)
ENG REGR	UK	0.11°	1995-2010	Perry et al. (2009)
KLIMAGRID	Norway	1 km	1995-2008	Mohr (2009)
PTHBV	Sweden	4 km	1995-2011	Johansson (2002)
CARPATCLIM	Carpathians	0.10°	1995-2010	Szalai et al. (2013)
REGNIE	Germany	1 km	1995-2014	Rauthe et al. (2013)
GRIPHO	Italy	12 km	2001-2014	Fantini (2019)

Focusing on Percentile Intervals

As GCM frequency switches from overpredicting to underpredicting,

> D(GCM) will be smaller,

hence AV(RCM) will be smaller for bins close to this intersection

0.8

0.9

Largest AV can be found at the 99-100 interval

When observing the performance of each model, we can see that the AV is strongly driven by the GCM

Downscaling Signal

Difference between RCM and GCM anomalies,

compared with the corresponding region-average change in each model.

$$DS(\Delta P) = \left(\Delta P_{RCM_i} - \Delta \bar{P}_{RCM_i}\right) - \left(\Delta P_{GCM_j} - \Delta \bar{P}_{GCM_j}\right)$$

Adapting for Downscaling Signal

Difference between RCM and GCM anomalies,

compared with the corresponding region-average change in each model.

 $DS(\Delta P) = \left(\Delta P_{RCM_i} - \Delta \bar{P}_{RCM_i}\right) - \left(\Delta P_{GCM_i} - \Delta \bar{P}_{GCM_i}\right)$

Giorgi et al. (2016)

95-100

Where these correspond with a high positive added value (top) of the historical data,

we can assume that the RCM is more reliable in these regions, and there is added value there too.

Added Value

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Thank You for your

attention!

Email: jciarlo@ictp.it

© Authors. All rights reserved

References

- Fantini A. *et al.* (2018). Assessment of multiple daily precipitation statistics in ERA-Interim driven Med-CORDEX and EURO-CORDEX experiments against high resolution observations. *Climate Dynamics*, **51**: 877-900.
- Giorgi F. *et al.* (2016). Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. *Nature Geoscience*, **9**: 584-589.
- Kanamitsu M. & DeHaan L. (2001). The Added Value Index: A new metric to quantify the added value of regional models. *Journal of Geophysical Research*, 116 (D11106): 1-10.
- Kanamitsu, M., and H. Kanamaru (2007). Fifty-seven-year California Reanalysis Downscaling at 10 km (CaRD10). Part I: System detail and validation with observations. *Journal of Climate*, 20: 5553–5571.
- Rummukainen M. (2016). Added value in regional climate modelling. *Climatic Change*, 7: 145-159.
- Torma C. et al. (2015). Added value of regional climate modelling over areas characterized by complex terrain – Precipitation over the Alps. Journal of Geophysical Research: Atmospheres, 120: 3957-3972.

© Authors. All rights reserved