
Application of stratigraphic frameworks and thermochronological data on the Mesozoic SW Gondwana intraplate environment to retrieve GEOW the Paraná-Etendeka plume movement Corresponding author: Florian C. Krob, Institute of Earth Sciences, Heidelberg University, ThermoArchaeo Competence in Im Neuenheimer Feld 234, 69120 Heidelberg, Germany, Geosciences Florian.Krob@geow.uni-heidelberg.de, Telephone: +49-6221-4836

UNIVERSITÄT **HEIDELBERG** ZUKUNFT **SEIT 1386**

Your personalized Share Link:

https://authors.elsevier.com/a/1a%7Ea%7E,UYEnVdsa

* Corresponding author. E-mail address: florian.krob@geow.uni-heidelberg.de (F.C. Krob)

1 Introduction

changes over geologic time comes from passive continental margins, in Ever since plate tectonics has been linked to material flow in the particular in the South Atlantic region (Paton et al., 2008; Guillocheau et Earth's mantle (Wilson, 1963, 1965; Davies and Richards, 1992), it is al., 2012; Autin et al., 2013; Dressel et al., 2015), where spreading rate commonly accepted that convective motion in the sublithospheric changes appear to correlate with uplift events, presumably owing to mantle results in vertical deflections and horizontal plate motion on variations of upper mantle flow (Colli et al., 2013; Colli et al., 2014; the Earth's surface (Davies, 1999; Davies et al., 2019). Those mantle Brune et al., 2016). Dynamic topography thus links to the convective mantle flow regime. Theoretical considerations based on the dynamic (Hager et al., 1985; Braun, 2010), have attracted considerable attention topography response of Earth models to internal loads (e.g., hot rising plumes or cold sinking lithosphere) imply that the Earth's surface sustains deflections on the order of ± 1 km (Colli et al., 2016), resulting in significant signals and traces in the sedimentary records (unconformities and missing sections, e.g., Stille, 1919).

lately (Bunge and Glasmacher, 2018). Evidence for dynamic topography

flow-driven vertical deflections, known as 'dynamic topography'

Other recent studies by the authors:

International Journal of Earth Sciences https://doi.org/10.1007/s00531-020-01819-7

ORIGINAL PAPER

Late Neoproterozoic-to-recent long-term *t*–*T*-evolution of the Kaoko and Damara belts in NW Namibia

Florian C. Krob¹(10) · Daniel P. Eldracher¹ · Ulrich A. Glasmacher¹ · Sabine Husch¹ · Eric Salomon² · Peter C. Hackspacher³ · Nortin P. Titus⁴

Received: 29 August 2019 / Accepted: 8 January 2020 © Geologische Vereinigung e.V. (GV) 2020

Abstract

This research aims to reconstruct the Late Neoproterozoic-to-recent long-term time-temperature-evolution of the NW Namibian Kaoko and Damara belts combining numerical modeling of new thermochronological data with previously published geochronological data, i.e., U–Pb, Sm–Nd, and Rb–Sr analyses, and K/Ar, ⁴⁰Ar/³⁹Ar low-temperature thermochronology. Consequently, we retrieve a coherent long-term time-temperature-evolution of the NW Namibian Neoproterozoic basement rocks including rates of exhumation and subsidence periods over the last ~ 500 Myr. Neoproterozoic basement rocks including rates of exhumation and subsidence periods over the last ~ 500 Myr. Neoproterozoic basement rocks include fast post-Pan African/Brasiliano cooling and exhumation, reheating, or rather subsidence during the development of the Paleozoic-to-Mesozoic SW Gondwana intraplate environment and a significant thermal overprint of the rocks during South Atlantic syn- to post-rift processes, and therefore, resemble the opponent SE Brazilian time–temperature-evolution. We provide an overview of thermochronological data including new apatite and zircon fission-track data derived from Neoproterozoic, Late Paleozoic, and Lower Cretaceous rocks. Apatite fission-track ages range from 390.9 ± 17.9 Ma to 80.8 ± 6.0 Ma in the NW Kaoko Belt with youngest ages confined to the coastal area and significant age increase towards the inland. New zircon apatite fission-track data reveal ages between 429.5 ± 47.8 and 313.9 ± 53.4 Ma for the rocks of the Kaoko Belt. In the central Damara Belt, new apatite fission-track age strue 138.5 ± 25.3 Ma to 63.8 ± 4.8 Ma. Combined apatite fission-track age distributions from Angola to Namibia and SE Brazil correlate for both sides of the South Atlantic passive continental margin and the reset AFT ages overlap with the lateral Paraná–Etendeka dike swarm distribution.

Keywords Long-term t-T-evolution \cdot Thermochronology \cdot Numerical modeling \cdot South Atlantic passive continental margin of NW Namibia

Introduction

Florian C. Krob and Daniel P. Eldracher have contributed equally to this study.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00531-020-01819-7) contains supplementary material, which is available to authorized users.

Florian C. Krob florian.krob@geow.uni-heidelberg.de

- ¹ Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
- ² Department of Earth Sciences, University of Bergen, Realfagbygget, Allégt. 41, 5020 Bergen, Norway
- ³ Departamento de Petrologia e Metalogenia, Instituto de Geosciências e Ciências Exatas, Universidade Estadual Paulista, Av. 24-A, 1515, Bela Vista, Rio Claro, SP 13506-900, Brazil
- ⁴ Ministry of Mines and Energy, Geological Survey of Namibia, Private Bag 13297, Winhoek, Namibia

Precambrian metamorphic and magmatic rocks are important archives that have stored information about long-term landscape forming processes, e.g., extensive and localized tectonic and volcanic activity, surface uplift and erosion (exhumation), and crustal scale subsidence. These longterm landscape forming processes are related to upper mantle and crustal tectono-thermal dynamics, which can be reconstructed from the long-term time (t)-temperature (T)evolution of rocks in specific geological environments, i.e., along passive continental margins around the world (e.g., Brown et al. 2014; Green et al. 2015, 2018; Japsen et al. 2012, 2014; Braun 2018).

Until recently, most of the research along the South Atlantic passive continental margin (SAPCM) in NW Namibia was either focused on the Precambrian deformation, the

Journal of South American Earth Sciences 92 (2019) 77-94

journal homepage: www.elsevier.com/locate/jsames

Multi-chronometer thermochronological modelling of the Late Neoproterozoic to recent t-T-evolution of the SE coastal region of Brazil

Florian C. Krob^{a,*}, Ulrich A. Glasmacher^a, Markus Karl^a, Melissa Perner^a, Peter C. Hackspacher^b, Daniel F. Stockli^c

^a Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany

^b Departamento de Petrologia e Metalogenia, Instituto de Geosciências e Ciências Exatas, Universidade Estadual Paulista, Av. 24-A, 1515, Bela Vista, 13506-900, Rio Claro, SP. Brazil

^c Department of Geological Sciences, University of Texas, Austin, 1 University Station C9000, Austin, TX, 78712-0254, USA

ABSTRACT

South-eastern Brazil is as an important geological archive for understanding and reconstructing various plate tectonic stages of the Wilson Cycle. In the Neoproterozoic, the area of the today's South Atlantic passive continental margin (SAPCM: e.g. between São Paulo and Laguna) of south-eastern Brazil underwent subduction, followed by the collision of the contemporary plates of South America and Africa creating a Neoproterozoic orogeny within the supercontinent Gondwana. During the Palaeozoic and Lower Mesozoic (stage 1), the future SAPCM, as an intracratonic area, experienced erosion, dendation of the Neoproterozoic mobile belts (Pan African/Brasiliano orogeny), and large basin formation (Paraná Basin) (stage 2). Possibly plume-driven pre-to syn-rift (embryonic), ocean spreading (juvenile), and post-break up (mature) processes led to the recent evolution of the SAPCM since the Upper Mesozoic (stage 3).

For the first time, this research aims to reconstruct the syn-to post-orogenic t-T-evolution of Neoproterozoic basement rocks of the SE coastal region of Brazil covering the entire geological evolution since the Late Neoproterozoic. Therefore, this study uses geochronological and thermochronological data combined with numerical modelling. This includes published geochronological data of Neoproterozoic basement samples such as U-Pb, Sm-Nd and Rb-Sr analyses, and low temperature thermochronology (LTT) data revealed by K/Ar, ⁴⁰Ar/³⁹Ar analyses. To this existing LTT data set, we report new apatite (AFT) and zircon (ZFT) fissiontrack, and (U-Th-Sm)/He (AHe, ZHe) data. Numerical modelling of that LTT data attached to the existing geochronological at indicates the following evolution:

- Stage 1: In the central part of the future SAPCM, the Pan African/Brasiliano post-orogenic cooling and exhumation (uplift and erosion of Neoproterozoic rocks to the surface) history occurs in three phases: (i) rapid Late Neoproterozoic exhumation, (ii) a period of relative thermal stability (temperatures of about 200–300 °C) in which rocks reside at upper crust levels during the Early Cambrian to Devonian, and (iii) a second rapid exhumation phase moving the Neoproterozoic basement rocks to the surface during the Devonian. The northern and southern parts indicate a distinct post-orogenic exhumation suggesting faster cooling and exhumation from the Late Neoproterozoic to Devonian/Carboniferous than in the central section.

- Stage 2: A phase of subsidence leading to the formation of the Paraná Basin followed by pre-to syn-rift processes and the emplacement of the Paraná-Etendeka flood basalts.

- Stage 3: Post-South Atlantic break up processes, such as erosion and exhumation.

1. Introduction

"Passive" continental margins are "first-order" archives of the Earth's surface documenting information from the interplay of endogene and exogene forces. The South Atlantic passive continental margin (SAPCM) in south-eastern Brazil not only provides information related to continental rifting, syn-to post-break up dynamics, and climate changes, but also stores the syn-to post-Late Neoproterozoic evolution since the assembly of West Gondwana. The large scale Pan African/Brasiliano orogeny (Pimentel et al., 1999) included the amalgamation of several cratons and microplates around the São Francisco-Gongo (SFC) Craton. During the Early Palaeozoic post-orogenic regional uplift and erosion triggered cooling and denudation of the Neoproterozoic mobile belts (Soares et al., 2001, 2008; Santos et al., 2015; Valeriano et al., 2008; Florisbal et al., 2012). Deposition of the material eroded at that time caused subsidence of the Paraná Basin (Basei et al., 2010). Since the Upper Mesozoic, the SAPCM in south-eastern Brazil was subject of pre-to syn-rift, ocean spreading, and post-break up processes.

Neoproterozoic metamorphic and magmatic rocks characterize the exposed geology between São Paulo and Florianópolis (Fig. 1). The Neoproterozoic basement is cut by mafic dykes of Lower Cretaceous, and alkaline to carbonatite intrusions of Early and Late Cretaceous age. To the West, the basement is overlain by Palaeozoic and Mesozoic

* Corresponding author. E-mail address: florian.krob@geow.uni-heidelberg.de (F.C. Krob).

https://doi.org/10.1016/j.jsames.2019.02.012

Received 18 June 2018; Received in revised form 15 February 2019; Accepted 20 February 2019 Available online 07 March 2019 0895-9811/ © 2019 Elsevier Ltd. All rights reserved.

🖄 Springer