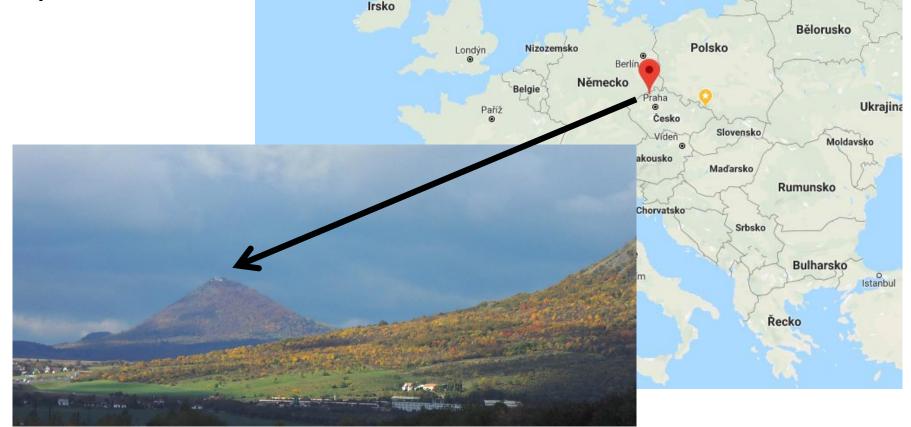

Time evolution of activated aerosol particles in low clouds

N. Zíková¹, P. Pokorná¹, P. Pešice², P. Sedlák², V. Ždímal¹

¹ Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, CAS ²Department of Meteorology, Institute of Atmospheric Physics, CAS



Introduction

Ť

 At Milešovka st. in Czechia, fog/low cloudiness is present on almost 55 % of days [1]

[1] Fišák, J., Tesař, M., & Fottová, D. (2009). Pollutant concentrations in rime and fog water at the Milesovka Observatory. *Soil and Water Research*, 196, 273–285.

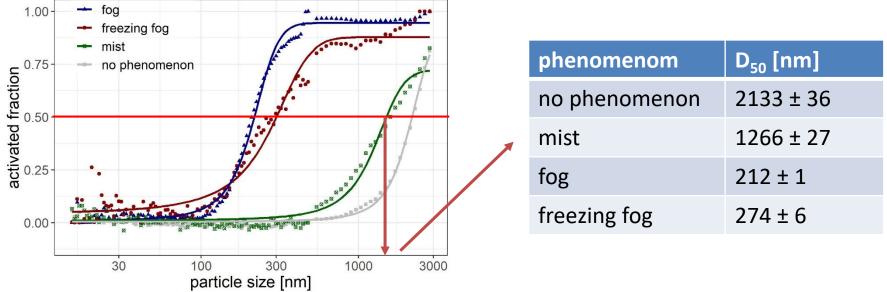
Methods

Observatory of the Institute of Atmospheric Physics

- on the top of the Milešovka Mtn.
- full meteorological data (24/7)
- additional measurements on fog/cloud characterization
- vertical cloud profiler
- Online measurement AA particle number size distributions (PNSD):
 - size range 10 nm 20 μm
 - SMPS and APS spectrometers

Methods

- heated whole air inlet (WAI), and PM_{2.5} sampling head
 - switched by an automatic valve
 - drying by diffusion dryers
 - time resolution 5 min
- activated PNSD
 - aPNSD = WAI $PM_{2.5}$

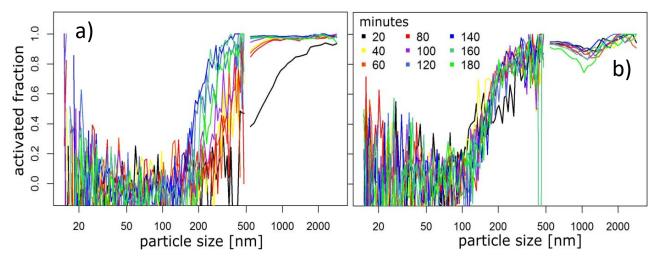


Methods

Asym

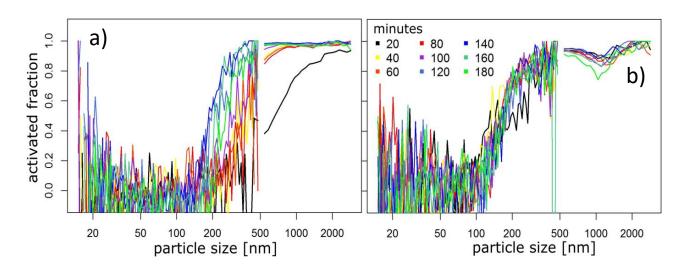
AF =

- WAI PM_{2.5} / WAI = activated fraction, AF [2]
- AF fitted with Sigmoidal function:
- D_{50} .. lower estimate for an activation diameter [3]



[2] Asmi, E., et al. (2012). Aerosol cloud activation in summer and winter at Puy-de-Dôme high altitude site in France. *Atmospheric Chemistry and Physics*, *12*(23), 11589-11607.

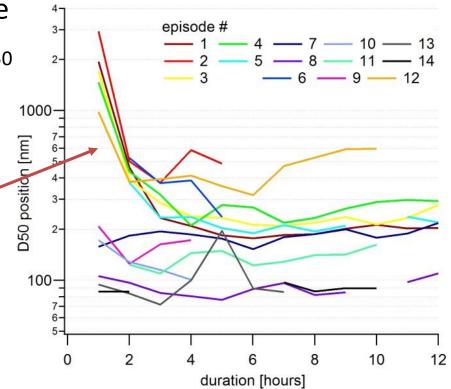
[3] Hammer, E., et al. (2014). Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign. Atmos. Chem. Phys. 14, 10517–10533.


Results – AF time evolution

- changes in the aPNSD at the beginning of episode
- the largest changes found within the first two or three hours of the fog episode duration
 - shift of the AFi to the smaller particles (a)
 - AFi becomes steeper, D50 value moves to the left
 - after 120 minutes, situations become stable

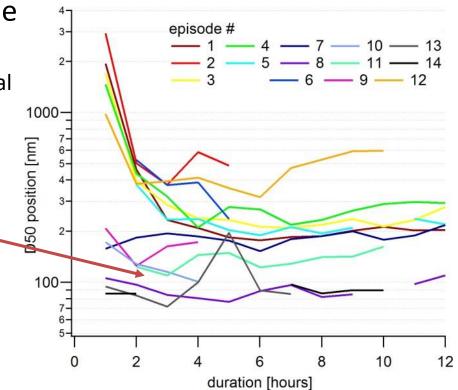
Results – AF time evolution

- During fog episodes that were preceded by another hydrometeor-related episode, the shift in the AFi was not observed
 - AFi would oscillate around the first measured AFi (b)
 - the steady state has been already reached during the preceding episode



Results – D₅₀ time evolution

- D50 calculated for each hour of the episode duration
- two main groups of D_{50} behavior in time were found


- strong decrease in the D_{50} in the first three hours, and later the D_{50} reaches almost a constant value

- steady value is of about 200 nm for all the episodes, independently on the time of the fog occurrence (time of day, season)

Results – D₅₀ time evolution

- D50 calculated for each hour of the episode duration
- two main groups of D₅₀ behavior in time were found
 - decrease at the beginning of the episode is not visible
 - D50 only fluctuates around its original value.
 - episodes that were a part of a long-term hydrometeor-related situations
 constant value the D₅₀ fluctuates around ranges from 90 to 200 nm

Summary

- almost 300 hours of fog and 45 hours of freezing fog measured
 - $\,$ PNSD from 10 nm to 2.5 μm
- effectivity of activation reached over 90 % for particles larger than 450 and 510 nm for fog and freezing fog, respectively
- the smallest activated diameter was identical for fog and freezing fog, 130 nm
- activation process speed, considered as the time evolution of the D₅₀ parameter, was also similar for fog and freezing fog
- AFi becomes steeper and the D₅₀ value moves to the smaller particles during the activation process
- at about 120 minutes after the beginning of a fog episode, the process reaches a steady state
- effectiveness, speed, and also size dependence of the activation were found to be connected with air mass history
- For continental air masses, the Afi was independent on the air mass history
 - activated particles mode position varied only from 230 to 260 nm
 - AFi are almost identical
 - inversion layers influencing the stratus fog development and limiting the mixing and connection with free troposphere during slow continental masses can play a role
- For maritime air masses, smaller particles were activated
 - aPNSD were shifted to 120 nm

Summary

For more details please see the fresh AE paper:

Zíková, N., Pokorná, P., Makeš, O., Sedlák, P., Pešice, P., Ždímal, V. (2020). Activation of atmospheric aerosols in fog and low clouds. *Atmospheric Environment*, 117490.

Thank you for your attention!

(CC

This work was supported by the Czech Science Foundation under grant P209/18/15065Y.