
Global (and regional) performances of SPI 
candidate distribution functions in 
observations and simulations

Patrick Pieper(1), André Düsterhus(2), and Johanna Baehr(1)

06
th

May 2020
Sharing Geoscience Online: HS3.6: 
Spatio-temporal and/or (geo) statistical analysis of 
hydrological events, floods, extremes, and related hazards

1 – Institute for Oceanography, Center for Earth System Research and Sustainability, Universität Hamburg, 

Hamburg, Germany

2 – ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland



Quick-Story

Identification of a single PDF that universally ensures SPI’s standardization:

the 3-parameter exponentiated Weibull distribution.
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Find a single PDF that ensures SPI‘s standardization universally for all:

locations of the globe during all accumulation periods and in observations + simulations. 

Flawless performance of exp. Weibull distribution across all targeted dimensions:

unprecedented in SPI-literature.

Aim:

Method:

Result:

Conclusion:



Background: Standardized Precipitation Index (SPI)

Calculation1:

1. Sort precip. totals for chosen 

accumulation period (displayed 

here as empirical cumulative 

PDF).

2. Fit candidate PDF onto sorted 
precip. totals. (Fit performed 
onto modeled precip. for all 

ensemble members at once.)

3. Z-transformation of cumulative 

probabilities onto standard 

normal PDF (μ=0; σ=1).

4. Assign precipitation totals of 

initial time-series to 

corresponding SPI values.

Encountering precip. totals of ≤ 𝑃∗ is 

erroneously assigned the likelihood ℒ𝑒. 

That results in the erroneous SPI value 

SPI𝑒.

Impact of fitting a badly suited candidate PDF:

In contrast, the likelihood ℒ∗ is a more 

realistic estimate of the occurrence 

probability of a precip. value of ≤ 𝑃∗. 
I.e. the fit should be closer to ℒ∗ at 𝑃∗. 

What‘s the big deal?

ℒ∗ is roughly 3 times less likely than ℒ𝑒

(transgressing the ~97th percentile vs. 

the ~91st percentile).

Thus, the resulting SPI time-series

would displays roughly 3 times as many

SPI values ≥ SPI𝑒 than expected from a 

standard normally distributed variable.

Selecting a suitable

candidate PDF when

calculating SPI is of

paramount importance to

preserve SPI‘s

standardization.

Graphic from Edwards2 (adjusted)

Graphic from Edwards2 (adjusted) Graphic from Edwards2 (adjusted)
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Advantages3,4: Standardization, spatio-temporal comparability, simplicity, …

Disadvantage4: Realization of its standardization: Thread to undermine each advantage.

 Key decision: Choice of suitable candidate probability density function (PDF)3,5,6.

 Obstacle: That PDF should describe highly non-normal precipitation distributions4.

 Preserving advantages aggravates obstacle: 

Surmount obstacle concurrently ∀: 

 Accumulation periods.

 Locations around the globe.

 In observations and simulations (gap in lit.).  

Motivation

Obstacle seems too complex for a quick-fix. 

Particularly when considering and tackling the gap in literature (simulations) concurrently.

 Investigate more complex solutions: 3-parameter PDFs.

Insurmountable by 2-parameter PDFs3-10.

Thus, when using SPI one should first:

test normality anew for investigated data 

sets, locations, and accumulation period3-8. 
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 Repetitive normality tests for candidate PDFs undermine SPI’s advantage of simplicity.

 Use of different PDFs undermine SPI’s advantage of spatio-temporal comparability.

 Simply employing one PDF irrespective of universal applicability violates standardization.



Modeled Precipitation: Max-Planck-Institute Earth System Model (MPI-ESM):

• Seasonal Prediction System11: Initialized in May and November with 10 ensemble members.

• Run in Low-Resolution (MPI-ESM-LR): T63 with 47 (40) layers in the atmosphere (ocean).

• Neither bias- nor drift-corrected: Analyze PDF’s fit of modeled distribution  worst-case.

Observed Precipitation: Global Precipitation Climatology Project (GPCP)12:

• Combines direct observations and satellite-data.

• Monthly precipitation set on a 2.5°x2.5° global grid.

Ensuring spatio-temporal Comparability between Model and Observations:

• Modeled precip. (on T63 – approx. 1.875°x1.875°) interpolated to GPCP’s grid (2.5°x2.5°).

• Analyze common time period of hindcasts (1982-2013) and GPCP (1979-present).

Methods: Model and Data

Analyzed candidate PDFs:
• Gamma distribution (GD2)

• Weibull distribution (WD2)

• Gen. gamma distribution (GGD3)

• Exp. Weibull distribution (EWD3)

Fitting Procedure:
Parameter estimation method: 
• Maximum-Likelihood Estimation (MLE)
Optimization procedure for MLE: 
• Simulated annealing method13

• BFGS quasi-Newton method14

• Nelder and Mead method15

Methods: Candidate PDFs

Global and regional

investigation:

Figure 2: Analyzed candidate PDFs. Displayed are

examples of those PDFs with scale and shape

parameter(s) = 2.
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Figure 1: Borders of analyzed regions



Methods: Skill Metrics

1. Comparing actual against theoretical occurrence probability (TOP)3:
• Needs definition of analyzed SPI intervals.  7 different classes are usually discussed in literature16:

SPI intervals SPI≥2 2>SPI≥1.5 1.5>SPI≥1 1>SPI>-1 -1≥SPI>-1.5 -1.5≥SPI>-2 SPI≤2

SPI classes Extremely wet Severely wet Moderately wet Normal Moderately dry Severely dry Extremely dry

TOP [%] 2.3% 4.4% 9.2% 68.2% 9.2% 4.4% 2.3%

2. Ranking by Bayesian Information Criterion Differences (BIC-D)17:
Bayesian Information Criterion (BIC) analytically evaluates trade-off: information gain vs. complexity (punishes complexity).

BIC-D discriminate PDFs based on relative difference to best-performing PDF: BIC−D𝑖 = BIC𝑖 - BIC𝑚𝑖𝑛

while 𝑖 indexes candidate PDFs, 𝑚𝑖𝑛 indicates the best performing PDF.

• Cannot evaluate absolute performance 

 Needs to be safeguarded by other metric(s)!

• Interpretation according to Burnham and Anderson17:

BIC-D value < 2 < 4 < 7 > 10

BIC-D interpretation ideal well sufficient no skill

Spatial Aggregation: 

TOP BIC-D

Comparison Subjective Analytical

Assessment Absolute Relative 6

TOP and BIC-D form complementary analysis:
• While TOP comparison (1) relies on a subjective evaluation,

BIC-D rank (2) PDF based on an analytically evaluation.

• While BIC-D only assess relative performance differences, 

our TOP comparison assess performance in absolute terms.



Results: SPI3M Global deviations from TOP

Deviations from the Normal Distribution:

• GD2, GGD3, and EWD3 describe without seasonality similarly well the 

overall frequency distribution of observed 3-months precipitation totals.

• WD2 performs overall poorly and is in every regard inferior to any other 

candidate PDF.

• GGD3 and EWD3 describe the frequency distribution of modeled 3-months 

precipitation totals distinctly better than any 2-parameter candidate PDF.

• GD2 describes the frequency distribution of modeled 3-months precipitation 

totals still sufficiently well on global average.

• Both 2-parameter candidate PDFs are unable to benefit from the increased 

length of the database in simulations (fit all ensemble members at once) 

relative to observations, while both 3-parameter PDFs strongly benefit from 

that increase. Apparent in weighted (by TOP) sum of deviations (WS in 
legend).

Figure 3: Deviations between actual and TOP. Displayed for observed (left) and modeled (right) SPI time-series. SPI

time-series are derived by using the simple 2-parameter gamma distribution (GD2, top row), the simple 2-parameter

Weibull distribution (WD2, second row), the 3-parameter generalized gamma distribution (GGD3, third row), and the 3-

parameter exponentiated Weibull distribution (EWD3, bottom row). The legends depict the sum of deviations along all
SPI categories weighted by their respective theoretical occurrence probability: weighted sum (WS).
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No seasonal-dependence of absolute performance:

Without flaws for best-suited PDFs (EWD3, GGD3, and GD2).

Open question: performance of EWD3/GGD3 relative to GD2:

Enough improvement to justify increased complexity?



Results: SPI3M Global BIC-D 

///_////////////////////////////////////////////

//_///////////////////////////////////////////

////_/////////////////////////////////////////////

Percentages of grid-points indicate the confidence in 

candidate PDFs to overall perform according to the 

respective BIC-D category. We evaluate coverages 

as follows:

≥ 95% (≤ 5%) as sign of substantial confidence.

≥ 85% (≤ 15%) as sign of average confidence.

< 85% (> 15%) as sign of insufficient confidence.

BIC-D Frequencies:

Observations:

• EWD3 ideal in virtually every grid-point.

 Without any flaws.

• GD2 flawed in ~7% of grid-points (GP).

Simulations:

• EWD3 ideal in as many GPs as GD2.

 Without any flaws.

• GD2 ideal in in as many GPs as EWD3.

 But flawed in ~25 % of grid-points.

 And worthless in ~12% of GPs.

Performances of candidate PDFs in 

Figure 4: BIC-D frequencies. Percentages of global land grid-points in which each distribution function yields BIC-

D values that are smaller than or equal to a given BIC-Dmax value. BIC-D freuqencies sum up to 100% at the BIC-

Dmax value of 0 (only one PDF performs best in each grid-point). Vertical black lines indicate increased complexity

penalty (CP) of 3- relative to 2-parameter PDFs (sample size-dependent). BIC-D frequencies are displayed for

each candidate PDF for observations (left) and simulations (right).

Table: Percent of grid-

points which are classified

according to Burnham

and Anderson depending

on whether they display

BIC-D values lower than

specific thresholds or

higher than 10 for each

candidate PDF over both

seasons. Percentages of

grid-points indicate the

confidence in candidate

PDFs to overall perform

according to the

respective BIC-D

category. 8

ideal well sufficient n
o

sk
ill

ideal well sufficient n
o

sk
ill



Summary

 Complementary test methodology for SPI normality:
• Difference between actual and TOP as interest lies on classes with well-defined intervals.

• Alongside BIC-D to accompany subjective evaluation by an analytical, user-, and 

aggregation-friendly metric. BIC-D should not be used as stand-alone metric!

 EWD3 – SPI’s best-suited candidate PDF in our analysis: Standardization ∀: 
 Accumulation periods (not shown, here).

 Locations around the globe (not shown. But global results are robust in each region).

 In observations and simulations.

Full-Story

 Goodness-of-Fit tests cannot analyze SPI-normality.

 Performances of candidate PDFs for all common accumulation periods (1-, 6-, 9- , and 12-months).

 EWD3 is also better-suited than (indistinguishable from) a multi-PDF approach.

 The meticulousness applied to the optimization procedure is as important as the choice of 

the candidate PDF (and probably more important than the parameter estimation method).

 EWD3 outperforms the commonly employed GD2 for a sample size of 31 years.

The larger the sample size, the larger is also the improved performance.

Full-story available in HESSD:
Pieper, P., Düsterhus, A., and Baehr, J.: Global and regional performances of SPI candidate distribution functions in

observations and simulations, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-614, in review, 2020.
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