

CSIC IRNAS CAGROSCOPE TUNDACIÓN

* pcampos@irnas.csic.es

INTRODUCTION

Due to the chemical composition and surface properties of biochar, a C-rich porous material produced by pyrolysis of biomass, it can act as an effective tool for the remediation of soils polluted with trace elements [1, 2]. However, its capacity to sorb these contaminants in a solution varies considerably depend on pyrolysis conditions, but also on the feedstock. Biochar properties vary with feedstock, pyrolysis temperature and time of pyrolysis [3].

Objective: to evaluate the capacity of biochars from two crop residues to sorb Pb²⁺ and Cu²⁺.

MATERIALS AND METHODS

References:

[1] Uchimiya, M.; Klasson, K.T.; Wartelle, L.H.; Lima, I.M.; 2011. Chemosphere 82, 1438-1447. [2] Zhao, J., Shen, X.-J., Domene, X., Alcañiz, J.-M., Liao, X., Palet, C., 2019. Sci. Rep. 9, 9869. [3] Campos, P., Miller, A.Z., Knicker, H., Costa-Pereira, Merino, A., De la Rosa, J.M., 2020. J. Waste Manag. 105, 256-267.

Application of biochar from crop residues for the removal of lead and copper José M. De la Rosa¹, Águeda Sánchez-Martín¹, María L. Sánchez-Martín¹, Nikolas Hagemann^{2,3}, Heike Knicker¹, and Paloma Campos^{1*} (1) Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Reina Mercedes 10, 41012, Seville, Spain, (2) Agroscope Zurich, Reckenholzstr. 191, Zurich, Switzerland, (3) Ithaka Institute, Arbaz, Switzerland.

RESULTS

Table 1. Elemental analysis and ash content (%) of biochars.											
	TC (%)	TH (%)	TN (%)	O (%)	H/C _{at}	O/C _{at}	C/N	Ash o	conte (%)	ent	
CWB	75.7 ±0.3	1.80 ± 0.02	0.30 ± 0.06	18.7	0.3	0.19	252	3.5	±	0.7	
RHB	53.7±0.1	1.61 ± 0.02	0.51±0.24	9.48	0.4	0.13	106	34.7	±	0.5	
OPB	92.7 ±0.2	2.52 ± 0.06	0.16 ± 0.09	3.58	0.3	0.03	585	1.0	±	0.3	
T 0 0					C			<u> </u>			

Table 2. Physical and chemical characteristics and Surface properties of biochars.

	рН	WHC (%)	SSA-BET (CO ₂ , m ² g ⁻¹)	lodine Index	Total basicity (meq g⁻¹)	Total acidity (meq g⁻¹)
CWB	9.95 ± 0.18	243 ± 39	403	149	0.95	1.69
RHB	10.10 ± 0.01	595 ± 22	292	180	0.51	1.70
OPB	9.34 ± 0.09	70 ± 13	473	123	0.05	0.17

Acknowledgements: The former Spanish Ministry of Economy, Industry and Competitiveness (MINEICO) and AEI/FEDER are thanked for funding the projects CGL2016-76498-R and CGL2015-64811-P. MINEICO is also thanked for funding the "Ramón y Cajal" post-doctoral contract of José M. De la Rosa. P. Campos thanks the "Fundación Tatiana Pérez de Guzmán el Bueno" for funding her PhD.

- Greater basic and acid sites for RHB and CWB than OPB.
- % Removal of the studied cations in the following order: CWB>RHB>OPB.

- be more related to the total acidity.

- fitted better adsorption data in OPB.

• TC > 50 % for all biochars. Biochars showed high aromaticity.

• Greater SSA-BET measured with CO₂ for OPB and CWB than RHB.

Langmuir isotherm fitted well for RHB and CWB for both cations. • Temkin and Freundlich fitted Cu²⁺ and Pb²⁺ adsorption for OPB, respectively.

CONCLUSIONS

• High SSA-BET was not related with high adsorption capacity of the biochars. It may

• CWB, followed by RHB, showed the greatest capacity for adsorption of Cu²⁺ and Pb²⁺.

• OPB showed the greatest SSA-BET, whereas it also showed the lowest % of removal for both cations. OPB showed few acid sites (only 0.17 meg g⁻¹), related with low

oxygen content and very low O/C_{at} ratio.

• Langmuir model well fitted data of RHB and CWB, whereas Freundlich and Temkin