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Lagrangian pair dispersion 

Conclusions 

Turbulence in the upper ocean in the submesoscale range (scales smaller than the deformation radius) plays an important role for the heat exchange with the 
atmosphere and for oceanic biogeochemistry. Its dynamical features are thought to strongly depend on the seasonal cycle and the associated mixed-layer 
instabilities. The latter are particularly relevant in winter and are responsible for the fomation of energetic small scales that are not confined in a thin layer 
close to the surface, as those arising from mesoscale-driven processes, but extend over the whole depth of the mixed layer. The knowledge of the transport 
properties of oceanic flows at depth, however, is still limited, due to the complexity of performing measurements below the surface. Relative dispersion can be 
a useful tool to understand the coupling between the surface and interior dynamics. 

We consider a quasi-geostrophic model system (Fig. 1) made of two coupled fluid layers 
(aimed to represent the mixed layer and the thermocline) with different stratification. Such a 
model can give rise to both meso and submesoscale instabilities (Fig. 2) and dynamics that 
compare well with observations of wintertime submesoscale flows [1]. While the former 
instabilities are due to classical baroclinic instability, the latter are associated with mixed 
layer instabilities. 

Figure 1: Schematic of the 2 layer model. 

Figure 2: Instability growth rates 
versus horizontal wavenumber. 

Figure 3: Buoyancy field, normalized by 
its root-mean-square (rms) value at the 
surface (z=0) for the three considered 
cases: TC (h=250 m, H=2h, Nt=Nm), ML 
(h=100 m, H=10h, Nt=4Nm), F (h=100 m, 
H=5h, Nt=4Nm). In all cases the vertical 
shear is Λt=Λm. 

Figure 4: (Top row) Kinetic energy 
spectra versus horizontal wavenumber 
at the surface and at depth z=-100 m 
for the three considered cases. The 
c o n t i n u o u s a n d d a s h e d l i n e s 
respectively coorespond to k-5/3 and k-3  
for reference.  
(Bottom row) Vertical structure of kinetic 
energy spectra for the three considered 
cases. The horizontal dashed lines 
indicate the depths where the I-kind 
FSLE (Fig. 5) is computed. 

Thermocline	  only	  model	  (TC)	   Mixed	  layer	  only	  model	  (ML)	   Full	  model	  (F)	  

Figure 6: FSLE (II kind) for the 
three considered cases. The 
settings are as in Fig. 5 but 
particles in a pair are now 
selected such that, initially, the 
first one is at the surface and the 
second one is at a depth z, with 
no horizontal separation between 
them. 

Figure 5: FSLE (I kind) for the three 
considered cases; here           . 
For each z, 4096 original pairs are 
considered. The continuous and 
d a s h e d l i n e s r e s p e c t i v e l y 
correspond to δ-2/3 (Richardson local 
regime) and δ-2  (diffusive regime) for 
reference. Constant FSLE indicates 
a nonlocal dispersion regime. 

These equations are numerically integrated by 
means of a pseudospectral method using realistic 
parameter values, for the (wintertime) midlatitude 
ocean, on a doubly periodic square domain of 
side L=500 km at resolution 5122.  

In all the examined cases (TC, ML, F) the turbulent dynamics at the surface are characterized by a broad range of active scales and kinetic energy spectra scaling 
approximately as k-5/3. In the TC case, however, the surface flow has a more filamentary structure and small-scale eddies rapidly decay with depth, with corresponding 
spectra that are steeper than k-3. In the presence of mixed-layer instabilities (ML, F), the full mixed layer is energized. In the F case, near the bottom, the particularly 
energetic spectra are due to the SQG-like dynamics at z=-H, as in the TC case. 
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r = 2

In the statistically steady state, the turbulent flows of the 
different models are seeded with a large number N of 
Lagrangian tracer particles. At each depth, particles move 
according to: 

where U is the zonal mean flow at the considered depth. 
These equations are integrated using a 4th order Runge-
Kutta scheme and bicubic interpolation of the velocity field 
at the particle positions. Pair dispersion is analyzed using 
both fixed-time and fixed-scale indicators. The scaling 
behaviors from both types of statistics are compatible, 
however quantitative estimations are more difficult to obtain 
by analyses based on fixed-time averages, due to the large 
variability of dispersion in time and with the initial pair 
location. We then focus on the measurement of the FSLE 
[2-4], defined as: 
 

     

The I-kind FSLE concerns dispersion of 
pairs of particles at the same depth; the 
II-kind FSLE concerns dispersion of pairs 
of particles at different depths. 

      are related to the buoyancy field by 

The model dynamics are specified by the 
evolution equation of 3         sheets,     (see [1] for 
more details): 
 

                                    

The QG assumption sets a relation between        and     
thsuch that                                (with     the stream-
function at depth  ),                             .       and     are 
the Brunt-Väisälä frequencies of the two layers. 

Thermocline	  only	  model	  (TC)	   Mixed	  layer	  only	  model	  (ML)	   Full	  model	  (F)	  
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We find that relative dispersion transitions from a local to a nonlocal regime [2] with increasing depth, in agreement with 
the behavior of kinetic energy spectra [3] in Fig. 4. Such transition is more marked for the TC case; in the ML, F cases 
dispersion is local in the whole mixed layer (Fig. 5). We analyze the correlation between the dispersion properties at the 
surface and at depth by means of the FSLE-II [4] (Fig. 6). At small depths the FSLE-II behaves similarly to the FSLE-I at 
separations δ>O(10) km, for the TC case. Due to vertical shear and the less energetic small-scale flow at depth, it gets 
steeper (scaling ≈ δ-1) at larger depths, first at small separations and then also at larger ones. In the ML and F cases, the 
FSLE-II is similar to the FSLE-I over a broader range of separations and over the whole mixed layer; at greater depths a 
steepening, due to vertical shear and smoother deep flow, is observed, as in the TC case. At the largest depths, the 
FSLE-II tends toward a generic form independent of depth, a point that still needs to be fully understood.   
 

Our preliminary results indicate that, in the absence of a mixed layer, dispersion properties rapidly decorrelate from those at the surface and, due to the missing small-
scale flow features and vertical shear, a transition from local to nonlocal dispersion occurs at depth. In the presence of a mixed layer, the dispersion regime is found to 
be local troughout the mixed layer; below it the less energetic content of small-scale eddies and vertical shear cause a change of behavior at separations <O(10) km. 
Further developments will be directed to explore in more detail the interplay between 2D turbulence, transport by the mean flow and vertical shear. 
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