Ecole et observatoire

@Il

des sciences de la Terre

Université de Strasbourg

' Ecole et Observatoire des Sciences de la Terre, Strasbourg, FR

Microstructural control on compaction localisation in granular materials
Lucille Carblillet!, Michael J. Heap?, Fabian B. Wadsworth?, Patrick Baud?, Thierry Reuschlé!

SR
WV Durham

University

> Department of Earth Sciences, Durham University, Durham, UK

Introduction

Strain localisation has been observed over a large range of scales and under a variety of conditions. In geomaterials, localised deformation may be accompanied by dilatancy and translate into shear bands under nominally brittle conditions or by shear-
enhanced compaction and result in compaction bands under ductile conditions. Previous studies suggested that the formation and geometry of compaction bands depends on the microstructure of the rock (Tembe et al. 2008 ; Louis et al., 2009 ; Baud et
al., 2012 ; Cheung et al., 2012). We investigated the influence of microstructure on compaction localisation in porous rocks using sintered glass bead samples, which allowed for a tight control on grain size and shape and sample porosity.
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using mechanical data and acoustic emissions. A compilation of these critical values Is presented in (4).
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