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In the Harz mountains (Lower Saxony, 
Germany), forest monitoring of the Norway 
spruce stands (Picea abies Karst.) in the Bramke
valley has been ongoing since the 18th century. 
Just after WWII, hydrological records started, 
while meteorology, deposition, hydrochemistry, 
soil hydrology and other ecosystem variables 
were measured since the 1960ies. Three small 
catchments – Lange (LB), Steile (SB) and Dicke
(DB) Bramke (Fig. 1) – can be used for a paired 
catchment approach to quantify the impact of 
forest management on catchment-scale 
hydrology. The expected water balance under 
climate change and growing stands has been 
modelled with process models (Sutmöller and 
Meesenburg 2018), indicating drought stress 
and increased vulnerability of these forests.

Results
The Tarnopolski diagram (Fig. 3) shows that
Bramke hydrochemistry does not belong to a
simple correlated stochastic process. The spread
between catchments is as large as between the
variables. The Entropy-Fisher Information (FI) plot
for 8 different ions (Fig. 4; both concentrations
and fluxes) shows that the time series are high-
entropic, differ between catchments, and have
systematically higher FI than a standard reference
process, the fractional Brownian motion. Here,
trends were removed nonlinearly using Singular
System Analysis (Golyandina and Korobeynikov
2014). The q-entropy and complexity for NO3
(Fig. 5) show closed loops, typical for stochastic
processes with a fixed Hurst exponent. The
difference between the catchments is
pronounced.
The 𝛼𝛼-entropy and 𝛼𝛼-complexity (Fig. 6) for 
hydrometeorological data and catchment runoff 
reveals that the output from the systems is 
qualitatively different from the input since the 
curvature is different.  
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Introduction

Figure 1. The three first-order catchments in the Bramke valley. 
Water samples are taken at the outlet of each; at Lange Bramke, 
also the spring is sampled (LBS). Streamflow at daily resolution is 
available from gauged weirs at the outlets but not from the spring.   
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Conclusions
The comprehensive data from the Bramke valley
show complex dynamic behaviour, not easily
attributable to simple stochastic processes. 
There is a main difference between input and 
output variables, and although the output time 
series belong to the same process class, they
differ markedly between catchments. In a next
step, we will relate these differences to historic
forest management and disturbance regimes, 
and also investigate the stability of the patterns
against changing temporal resolution. The 
framework also provides a very strong testbed
for the validation of process-based models.

Figure 4. Permutation Entropy and Fisher Information for 
eight different ions from the Bramke. Colours indicate 
catchments. The solid line is for the fractional Brownian 
motion.

Figure 5. q-entropy and complexity for NO3 from the Bramke
catchments. q runs from 10-3 to  102 . Closed loops indicate 
long-range stochastic processes. The dashed line is for 
fractional Brownian motion with a Hurst exponent H=0.63 . 
The conventional values (q=1) are marked.

Analysis methods
The recently introduced 2D diagrams of Tarnopolski
(2016) display normalized squared successive 
differences vs. turning points. White noise is located  
at (1,1), parametric noise processes are 1D-curves.
The permutation entropy, complexity (Rosso et al.
2010) and Fisher information (Sippel et al. 2016) are
based on ordinal patterns generated from the time
series with word length 𝐷𝐷 = 4 . Recent extensions
are (i) the q-entropy and q-complexity (Ribeiro et al.
2017) based on the q-logarithm log𝑞𝑞 𝑥𝑥 = (

)
𝑥𝑥1−𝑞𝑞 −

1 /(1 − 𝑞𝑞) (Tsallis 2009; 0 ≤ 𝑞𝑞 < ∞ and
log1 𝑥𝑥 = log(𝑥𝑥)) , and (ii) the (Renyí) 𝛼𝛼-entropy and
𝛼𝛼-complexity (Jauregui et al. 2018). They separate
stochastic from deterministic-chaotic processes: the
former show closed loops in the q-entropy vs. q-
complexity plane, deterministic ones do not. They
also differ qualitatively in their curvature in the 𝛼𝛼
plots. The methods classify time series and enable a
detailed data—model comparison.
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Figure 2. Some examples of the Bramke time series: hydrochemical
concentrations at LBW 1980-2019. Note the strong decline of 
sulfate, the peak in nitrate in the mid-80ies, and the sharp increase 
in Na in the early 1990ies, also seen in Ca and Cl. Units are mg/l.

Figure 3. Tarnopolski analysis of hydrochemistry, using 
fractional Brownian motion, red and pink noise as 
reference. Each ion appears 4 times (LBW, LBS, DB, SB). 
All time series are incompatible with correlated noise 
(solid curve). In most cases, the difference between the 
catchments is remarkable. 

Figure 6. 𝛼𝛼-entropy and 𝛼𝛼-complexity climatological 
variables and runoff flow rates. The curvature indicates the 
process class. The conventional values (𝛼𝛼 = 1) are marked.
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