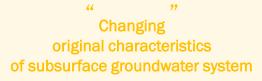


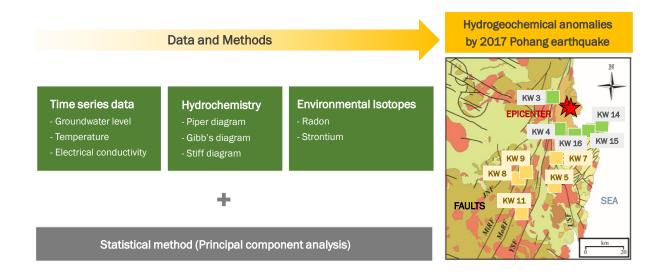
Jaeyeon Kim¹ and Kang-Kun Lee^{1*}

¹ School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea

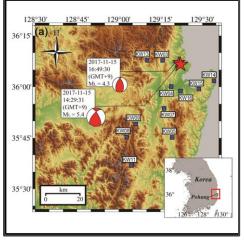
*Corresponding author (kklee@snu.ac.kr)


Approaches

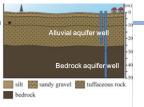
Natural Influences


- Earthquakes
- Volcanic eruptions
- Cyclonic storms
- · Floods
- Droughts
- · Landslides

•••



Approaches


Study Site

POHANG, SOUTH KOREA

Groundwater well Information

Well ID	Latitude	Longitude	Well type	Sampling Depth
KW 3	36.13 N	129.26 E	Bedrock	25
KW 4	36.00 N	129.31 E	Alluvial, Bedrock	20, 35
KW 5	35.75 N	129.32 E	Alluvial, Bedrock	10, 35
KW 7	35.90 N	129.27 E	Alluvial, Bedrock	8, 50
KW 8	35.75 N	129.05 E	Alluvial, Bedrock	5, 50
KW 9	35.82 N	129.10 E	Alluvial, Bedrock	10, 50
KW11	35.62 N	129.08 E	Alluvial, Bedrock	10, 25
KW13	36.13 N	129.17 E	Alluvial, Bedrock	10, 50
KW14	36.03 N	129.57 E	Bedrock	50
KW15	35.99 N	129.48 E	Bedrock	30
KW16	35.98 N	129.37 E	Bedrock	26

3

5

Date, time (KST)	Mw	Latitude	Longitude
2017-11-15, 14:29:31	5.5	36.12 N	129.36 E
2017-11-15, 14:32:59	3.6	36.10 N	129.36 E
2017-11-15, 15:09:49	3.5	36.09 N	129.34 E
2017-11-15, 16:49:30	4.3	36.12 N	129.36 E
2017-11-16, 09:02:42	3.6	36.12 N	129.37 E
2017-11-19, 23:45:47	3.5	36.12 N	129.36 E
2017-11-20, 06:05:15	3.6	36.14 N	129.36 E

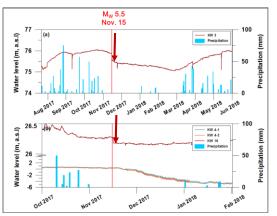
The mainshock and aftershocks data ($M_L \ge 3.5$) of the Pohang earthquake

[†] The red bold italics is the mainshock of the Pohang earthquakes.

Objectives

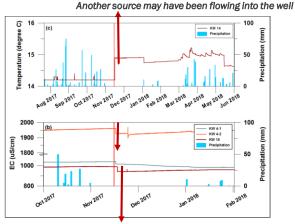
This approach will be achieved via:

- (1) Analyzing the time series data (groundwater level, temperature, and EC)
- (2) Interpreting major ions for identifying hydrochemical characteristics in the study area
 - by Piper diagram, Gibb's diagram, and Stiff diagram
- (3) Applying the environmental isotopes (Strontium and Radon)

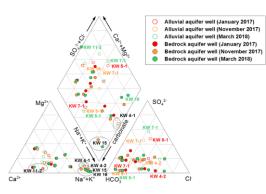

for interpreting the response mechanism to seismic events

(4) Conducting statistical method (PCA) to support the hydrogeochemical results.

This study further aims to suggest the interpretation method of using those data in other earthquake-prone regions.


 $\mathbf{\nabla}$

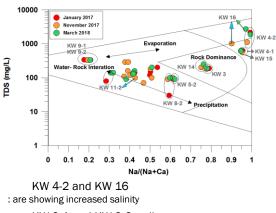
Results and Discussions - Time series data


Time series data (groundwater level, temperature, and EC)

In groundwater level data, decreasing patterns were detected in wells KW 3, KW 4-1, KW 4-2, and KW 16. These decreases could be explained by the influence of the earthquakes, as they were detected without precipitation events. Such abnormal decreases may be attributed to the opening of bedrock fractures or seawater intrusion (Reger et al., 1999; Ristagawe et al., 1996; Ristagare et al., 1995; Wakita, 1996; Wang et al., 2004; Wang and Chia, 2012).

Sharp decreases after the earthquake, which could be attributed to mixing with other water sources

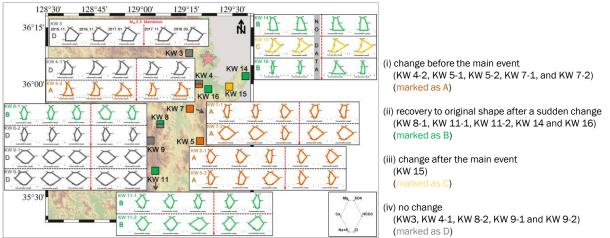
Results and Discussions – Major ions



< Piper diagram >

Ca-HCO₃ type

: indicates the chemical composition of shallow groundwater that interacts with sedimentary rocks

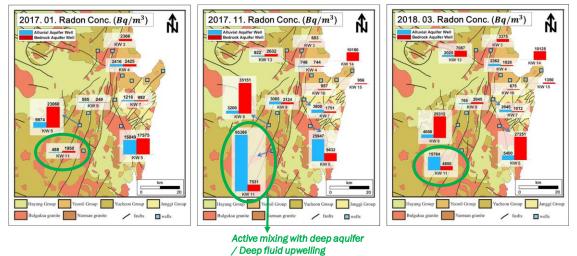

< Gibb's diagram >

KW 9-1 and KW 9-2 wells : were mainly affected by the water-rock interactions

Results and Discussions – Major ions

< Stiff diagram >

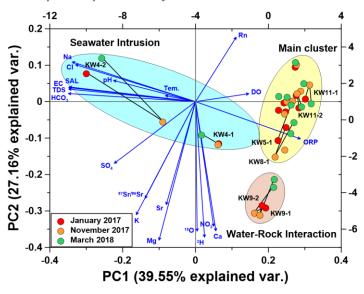
Results and Discussions – Environmental isotopes


< Strontium >

2017.01			2	2017.11		2018.03	
Well ID	Sr	⁸⁷ Sr/ ⁸⁶ Sr	Sr	⁸⁷ Sr/ ⁸⁶ Sr	Sr	⁸⁷ Sr/ ⁸⁶ Sr	
	(ppb)		(ppb)		(ppb)		
KW 3	31.30	0.706575	82.50	0.706486	83.70	0.706491	
KW 4-1	79.60	0.708188	196.00	0.708267	221.00	0.708306	
KW 4-2	225.10	0.707283	265.30	0.707886	273.00	0.707417	
KW 5-1	146.50	0.707610	101.10	0.706821	129.60	0.706883	
KW 5-2	170.00	0.707356	72.40	0.705730	69.50	0.705915	
KW 7-1	117.40	0.706590	165.40	0.707795	156.80	0.706518	
KW 7-2	78.00	0.705688	159.70	0.707460	160.00	0.706086	
KW 8-1	114.70	0.708231	164.50	0.708980	107.30	0.708892	
KW 8-2	75.00	0.706177	69.90	0.706439	71.50	0.706189	
KW 9-1	379.00	0.707919	407.30	0.708015	355.30	0.707856	
KW 9-2	538.40	0.707469	532.10	0.708083	477.40	0.707539	
KW 11-1	82.60	0.706385	72.60	0.706732	82.10	0.707103	
KW 11-2	54.20	0.706122	28.80	0.706188	48.80	0.705562	
KW 11-3	212.30	0.709625	125.40	0.706968	139.50	0.707051	

: shift of ⁸⁷Sr/⁸⁶Sr ratios in some alluvial aquifer wells could be attributed to water-rock interactions

Results and Discussions – Environmental isotopes


< Radon >


11

Results and Discussions – statistical methods

< PCA Principal component analysis >

Implications

Any Questions? jaeyon3@snu.ac.kr