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alization is present between the Loussavaara formation (Fig. 2C, D) 
and ignimbritic rhyolite (Frietsch 1979) of the Matojärvi formation 
(Fig. 2E). The Matojärvi formation is a heterogeneous and highly 
tectonized unit of ignimbritic rhyolite (2E), basaltic agglomerate and 
tuff (Fig. 2F), breccia-conglomerate (Fig. 2G), greywacke (Fig. 2H), 
and phyllite (Fig. 2I). The uppermost unit, the Hauki quartzite, marks 
the end of the Orosirian in the Kiruna area and constitutes cross-bed-
ded quartz-arenite (Fig. 2J) interrupted by breccia-conglomerate in a 
lower (Fig. 2K) and an upper horizon (Fig. 2L). The volcanic rocks, 
as well as the ores, were deposited during a short time interval of 
approx. 15 M. y. (Westhues et al. 2016).

Structural geology and tectonic interpretation
The stratigraphic column (Fig. 2M) indicates basin development 
during the emplacement of the IOA deposits in Kiruna. During sub-
sequent compression (D1-D2), the basin was inverted. During D1 a 
heterogeneously developed continuous S1 cleavage was distributed 
regionally and shear zones were localized at lithological contacts and 
favorable volcanoclastic and sedimentary rocks. The same structures 
were largely re-activated with differing kinematics under more brittle 
conditions during D2 (Andersson et al. 2020). No regionally distrib-
uted cleavage was produced during D2, instead F2 folds in low strain 
blocks adjacent to shear zones tend to lack axial planar cleavage and 
when present it is spaced and brittle. West of Kiruna, the shear zones 
show reverse oblique (D1; Fig. 3A) and reverse dip-slip (D2; Fig. 
3B) with an overall west-side-up sense-of-shear (Andersson et al. 
2020). Contrasting kinematics are shown by the shear zones in Kiru-
na where reverse oblique and reverse dip-slip movements (D2; Fig. 
3C, D) give an overall east-side-up sense-of-shear (Andersson 2019). 
Brittle components are uncommon in D1-structures whereas brittle 
and plastic structures formed simultaneous during D2 both in Kiruna 
(Fig. 3E) and regionally to the west (Fig. 3F; Andersson et al. 2020) 
indicating higher crustal levels during D2. The contrasting kinemat-
ics from west to east results in reverse west-dipping shear zones to the 
west, and reverse east-dipping shear zones to the east (cf. Fig. 4, 5). 
The result is a juxtaposition of different crustal levels with a central 
block of lower metamorphic grade (central Kiruna) surrounded by 
rocks of higher metamorphic grade.

Background
The Norrbotten lithotectonic unit (Stephens 2020) in northern Swe-
den hosts numerous iron and base metal deposits (Fig. 1), whereof 
the world-class Kiirunavaara iron oxide-apatite (IOA) deposit is the 
most famous one. The area shares many geological characteristics to 
other IOA and iron oxide-Cu-Au (IOCG) prospective terrains around 
the world. Similarities include a variable distributed sodic and po-
tassic alteration, bimodal character of host volcanic rocks, and the 
deposits tend to be either hosted by, or spatially related, to crustal 
scale deformation zones. Despite of the common structural control 
on mineralized systems in Norrbotten, only few studies have been 
performed focusing on the linkage between deformation, mineraliza-
tion, and hydrothermal alteration. In this predominantly field-based 
project, we focus on the structural setting and evolution in Kiruna 
(Fig. 1) and the relation to iron oxide-apatite, Fe-Cu-sulphide and 
their associated hydrothermal alteration. 

This complementary material to the EGU-abstract number EGU-
2020-280 aims at providing an overview of the most recent geo-
logical research produced within the CAMM (Centre of Advanced 
Mining and Metallurgy)-project as well as preliminary results from 
the Horizon 2020 project “New Exploration Technologies (NEXT)” 
at the Luleå University of Technology. We use results published in 
Andersson (2019), Andersson et al. (2019, 2020), as well as new ma-
terial in order to set these studies in a broader perspective.

Stratigtraphy
The Kiruna area constitutes the best-preserved continuous Rhya-
cian-Orosirian stratigraphic sequence in the Norrbotten region. The 
supracrustal pile is dipping and younging towards east. The Orosirian 
Kurravaara conglomerate marks the stratigraphic lowest unit and is 
(Fig. 2A), interpreted as an alluvial fan deposit (Kumpulainen 2000) 
overlying Rhyacian basaltic pillow lavas. Stratigraphically above the 
Kurravaara conglomerate, volcanic and volcanoclastic rocks host 
the largely concordant Kiirunavaara and Loussavaara IOA deposits 
at the contact between basaltic-andesitic rocks (Hopukka formation; 
2B) and rhyodacitic rocks (Loussavaara formation; 2C, D). A strati-
graphically higher, and largely concordant, horizon of IOA-miner-
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Hydrothermal alteration
The hydrothermal alteration linked to D1 is comprised of scapolite 
± albite ± sulphide that formed coeval with a magnetite + amphibole 
alteration (Fig. 6A; Andersson et al. 2020). In thin section, annealed 
pyrite textures and porous rim-growth with albite inclusions indicate 
pyrite recrystallization occurred after albitization and synchronous 
with magnetite-actinolite alteration during D1 (Fig. 6B). The alter-
ation styles characteristic for the D2-event is more diverse and po-
tassic-ferroan in character and most often hosted by D2-structures. It 
is comprised of K-feldspar ± epidote ± quartz ± biotite ± magnetite 
± sericite associated to Fe- and Cu-sulphide (Fig. 6C; Andersson et 
al. 2020). Both brittle and ductile D2-structures constitute effective 
traps for sulphide. Figure 6D shows a drill core sample of a F2-fold-
ed sequence in a phyllite horizon of the Matojärvi formation. X-ray 
computed tomography imaging in combination with continuous 
XRF-scanning of the same drill core sample reveal that pyrite was 
transported along brittle axial planar S2 and trapped in the F2 hinge 
zone (Fig. 6E; Andersson et al. 2019).  

Discussion
Two major deformation events in northern Norrbotten are fre-
quently reported regionally (e.g. Bergman et al. 2001, Bauer 2018, 
Bergman 2018, Andersson 2019). The timing of these deformation 
events is poorly constrained but thought to overlap with early and 
late syn-orogenic magmatism at c. 1.88 Ga and c. 1.78 Ga (Bergman 
et al, 2001, Sarlus et al. 2017) respectively. Ore formation associat-
ed to early magmatism comprises both IOA and IOCG formation 
even though geochronological data indicate that IOA emplacement 
is marginally earlier than IOCG during this early tectono-magmat-
ic event (cf. Romer et al. 1994, Smith et al. 2009, Martinsson et al. 
2016, Westheus et al. 2016). On the other hand, ore formation linked 
to late magmatism is dominated by structurally controlled IOCG de-
posits hosted by D2 structures and it is likely that these ores represent 
remobilization of earlier and more significant base metal deposits. 

The significance of the sulphide remobilization-entrapment in cm-
scale linked to D2-deformation in this study is ambiguous. However, 
we believe these small-scale key-observations will help understand 
regional scale remobilization-entrapment mechanisms linked to 
D2-deformation northern Norrbotten.

Figure 1: Geological map modified after Stephens (2020).
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Figure 2: Field images showing key localities of the Oro-
sirian part of the stratigraphy. From bottom: A) Brec-
cia-conglomerate of the Kurravaara conglomerate. B) Ba-
salt-andesite of the Hopukka formation. C) Rhyodacite of 
the Loussavaara formation. D) Breccia-conglomerate of 
the Loussavaara formation. E) K-feldspar alterated rhy-
olite of the Matojärvi formation. F) Basaltic agglomerate 
of the Matojärvi formation. G) Breccia-conglomerate of 
the Matojärvi formation. H) Graywacke of the Matojär-
vi formation. I) Phyllite of the Matojärvi formation. J) 
Cross-bedded quartz-arenite of the Hauki quartzite. K) 
Lower conglomerate of the Hauki quartzite. L) Upper con-
glomerate of the Hauki quartzite. M) Stratigraphic col-
umn of the Kiruna area showing the Orosirian part of the 
stratigraphy.
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Figure 4 Geological map of the Ekströmsberg area, west of Kiruna (Andersson et al 2020). The map shows steep 
west-dipping reverse shear zones sub-paralell with the shear zones in central Kiruna.
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Figure 5 Structural map of the central Kiruna area. The map shows steep east-dipping reverse shear zones.
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Figure 6 Hydrothermal alteration, A, C from Andersson et al. (2020), D-E from Andersson et al. (2019). A) Magnetite + 
amphibole alteration overprinted by scapolite + albite alteration, broadly D1-timing. B) BSE imaging of annealed pyrite 
recrystallized in an albite + pyrite + magnetite + actinolite mineral association C) K-feldspar + epidote + Fe-oxide + 
sulphide alteration of D2-timing overprinting magnetite + amphibole alteration. D) Drill core section showing an anti-
thetic flank fold in phyllite. E) CT-image of the same fold as in Fig. 6D. Red: pyrite, black: chlorite, dark grey: chlorite 
+ white mica + quartz, light grey: white mica + quartz. 
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