

Development of a numerical ice-sheet model for simulation of summit migration and dating SAITO Fuyuki (JAMSTEC)

<saitofuyuki@jamstec.go.jp>

Ayako Abe-Ouchi (AORI/JAMSTEC) Takashi Obase (AORI)

Quest for "Oldest-Ice" ice core

Mid Pleistocene Transition (MPT)

41 kyr-world to 100 kyr-world at \sim 1 Ma Gases trapped in ice are most direct access to the climate variability

Check the following for this topic:

- The Cryosphere Special issue (2013)
- Lisiecki and Raymo (2005)
- Fischer et al. (2013)
- EPICA community members (2004)
 - Dome C (Current oldest core~ 800 kyr)

• • • •

SAITO Fuyuki et al.

ICIES for Ice-core topics

Quest for drilling site(s) around Dome Fuji

Japanese community collaboration

Need to choose the site(s) before drilling Field works (NIPR/...) + Modeling (JAMSTEC/ILTS/AORI/NIPR)

Radar-echo sounding does good job

- Internal laying visualization
- Layer tracking from Dome Fuji
- Detection of bottom melting at present

Modeling can help....

- Simulation of temperature history
- Simulation of ice flow history
- Age computation (dating)

SAITO Fuyuki et al. ICIES for Ice-core topics

May 6 2020 3/34

Age computation with high accuracy

Equation of Age — pure advection equation

(1)
$$\frac{\mathrm{d}\mathcal{A}}{\mathrm{d}t} = 1$$
 or $\frac{\partial\mathcal{A}}{\partial t} + v \cdot \nabla\mathcal{A} = 1$,

where \mathcal{A} is the duration since the deposit.

Studies to show performances of various numerical schemes:

- Mügge et al. (1999), Rybak and Huybrechts (2003)
 - Comparison of Eulerian and Lagrangian methods
- Greve et al. (2002) Upwinds, QUICK, TVD-LF
- Tarasov and Peltier (2003), Lhomme et al. (2005); Clarke et al. (2005) Semi-Lagrangian
- Parrenin et al. (2007)
 - "Lagrangian thinning and Eulerian age scheme"

Still some possibilities for other schemes, e.g., (R)CIP scheme

✐

SAITO Fuyuki et al. *I*_CIES for Ice-core topics

May 6 2020 4/34

CIP schemes (e.g., Yabe et al., 2002)

A variation of semi-Lagrangian method

CIP = Constrained Interpolation Profile scheme

Two advection equations to solve (in 1d case): (2) $\frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} = h$, (3) $\frac{\partial g}{\partial t} + u \frac{\partial g}{\partial x} = \hat{h}$, x-derivative of (2),

where $g = \frac{\partial f}{\partial x}$, *h* and \hat{h} are non-advection terms. Interpolation functions F and G with constraints: (4) $\begin{cases} F_k(x_k) = f(x_k), & F_k(x_{k+1}) = f(x_{k+1}), \\ F'_k(x_k) = g(x_k), & F'_k(x_{k+1}) = g(x_{k+1}), \\ F'(x) = \frac{\mathrm{d}F}{\mathrm{d}x} \end{cases}.$

are used to compute upstream values.

SAITO Fuyuki et al. ICIES for Ice-core topics May 6 2020 5/34

RCIP schemes (e.g. Xiao et al., 1996)

RCIP ≡ a Rational function based CIP

Switch interpolation function between:
(5)
$$\begin{cases}
F_k(X) = C_3 X^3 + C_2 X^2 + C_1 X + C_0 & g_k \leq S_k \leq g_{k+1} \\
F_k(X) = \frac{C_2 X^2 + C_1 X + C_0}{1 + D_1 X} & \text{otherwise,}
\end{cases}$$

where
$$X = x - x_k$$
, $S_k = (f_{k+1} - f_k) / \Delta x_k$, $\Delta x_k = x_{k+1} - x_k$.

The RCIP shows **less diffusive** solution as well as **Less oscillation** at fronts.

SAITO Fuyuki et al. I_CIES for Ice-core topics May 6 2020 6/34

Demonstration of RCIP

Highlights of Saito et al. (2020)

Implement RCIP scheme on age computation in an ice-sheet model

- Vertical 1-d age computation under prescribed velocity history
- Comparison with first- and second-order upwind schemes
 - Not with various slope limiters
 - Not with even higher-order schemes
 - Not with other semi-Lagrangian
 - Not with Lagrangian
 - These are beyond the scope
- Two variation to compute upstream *departure points* in RCIP scheme — no significant difference

SAITO Fuyuki et al.

ICIES for Ice-core topics

May 6 2020 7/34

Demonstration of RCIP scheme on dating issue

Equations to solve (1-dimension)

(6)
$$\begin{cases} \frac{\partial \mathcal{A}}{\partial t} + w \frac{\partial \mathcal{A}}{\partial z} = 1 ,\\ \frac{\partial \mathcal{A}'}{\partial t} + w \frac{\partial \mathcal{A}'}{\partial z} = -\frac{\partial w}{\partial z} \mathcal{A}' ,\end{cases}$$

$$\mathcal{A}$$
: age, $\mathcal{A}' = \partial \mathcal{A} / \partial z$, w: velocity

Prescribed boundary condition and velocity profiles

(7)
$$w(\zeta, t) = -\left[\left(M_{\rm s}(t) + M_{\rm b}(t) - \frac{\partial H}{\partial t}\right)\tilde{w}(\zeta) - M_{\rm b}(t)\right], \quad \zeta = z/H,$$

(8)
$$\tilde{w}(\zeta) = 1 - \frac{p+2}{p+1}(1-\zeta) + \frac{1}{p+1}(1-\zeta)^{p+2}$$
,

 M_s, M_b : surface/basal mass input; H: thickness; p: a parameter

SAITO Fuyuki et al. ICIES for Ice-core topics

s May 6 2020

8/34

Example configuration

- *p* = 3 for *w*
- $M_{\rm b} = 0, H = 3000 \,{\rm m} \,{\rm constant}$
- Square-wave type M_s evolution (green-line)

Example result (square-wave)

Simulated age vs depth:

Example result (cosine-wave)

Simulated age vs depth:

Example result (square-wave)

Annual layer thickness $\lambda \sim 1/\mathcal{R}'$; Even spacing of 129 levels

 Depth-\u03c6 relation should follow steady velocity cases (two gray lines) if normalized shape of vertical velocity is the same

SAITO Fuyuki et al. ICIES for Ice-core topics May 6 2020

12/34

Example result (cosine-wave)

• Oscillation may show under smooth mass balance history SAITO Fuyuki et al. I_{CIES} for Ice-core topics May 6 2020 13/34

Example result (high resolution)

- Non-uniform smooth discretization of 513 levels
- Square-wave 50 kyr 50 kyr

SAITO Fuyuki et al.

I_CIES for lce-core topics

May 6 2020 14/34

Brief summary on RCIP implementation

- Computed annual layer thickness is less diffusive by RCIP, as expected
- Phase of changes in annual layer thickness is well preserved by RCIP, as expected

 \rightarrow under review in GMDD \checkmark

Development steps

Dating with high accuracy under prescribed flow history

 \Rightarrow How to compute flow history at ice divides?

I_CIES for lce-core topics

May 6 2020 15/34

Ice flow computation at divide

Steady flow structure is expected for a drilling site

Summit or ice-divide flow

- Different flow structure from the 'shear' region
- Divergent flow, no (little) horizontal velocity Horizontal scale ~ O(thickness)(Hindmarsh, 1996)

Need a different flow-regime modeling near divide, with higher-resolution ⇒ Nesting model development

I_CIES for lce-core topics

May 6 2020 16/34

Ice flow and approximation

Glen's flow law: $\dot{\boldsymbol{\epsilon}} = \boldsymbol{E}\boldsymbol{A}(T)\sigma^{n-1}\boldsymbol{\sigma}$ $\begin{array}{c|c} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \hline \sigma_{yy} & \sigma_{yz} \\ \hline \sigma_{yy} & \sigma_{yz} \\ \hline \sigma_{yy} & \sigma_{yz} \\ \hline \sigma_{z} & (deviatoric) \text{ stress} \end{array}$

E: enhancement factor.

 $E = E(\text{impurity}, \cdots)$

A: rate factor, A = A(T)

n: flow-law exponent, typically 3.

Shallow-Ice Approximation (SIA)

Use σ_{xz}, σ_{yz}

$$u = u_B - 2(\rho g)^n \left(\frac{\partial s}{\partial x}\right)^n H^{n+1} \int d\zeta EA(1-\zeta)^n$$

Good approx. over the (most) grounded part

Higher-order Approximation (HOA) HOA = SIA + $\sigma_{xx}, \sigma_{yy}, \sigma_{xy}$

- Near summit $\sigma_{xz}, \sigma_{yz} \sim 0$
- Near margin, ice-stream, floating part

SAITO Fuyuki et al. ICIES for Ice-core topics

May 6 2020 17/34

High resolution flow computation around Dome

A nesting model is effective

- Large-scale SIA modeling for most part
- Small-scale HOA modeling around the target

Both types of models are in hands....

SIA model: I_CIES (Saito and Abe-Ouchi, 2010) HOA model: I_CIES -HOA (Saito et al., 2003)

Development of a HOA/SIA nesting model

- **Goal**: a high resolution HOA model nesting on prescribed region around the target in low resolution SIA model
- Intermediate: embedding same resolution HOA model on prescribed region

SAITO Fuyuki et al. ICIES for Ic

*I*_C*IES* for lce-core topics

May 6 2020 18/34

HOA preliminary results

- *I_CIES* with 3D higher-order option (Saito et al., 2003)
- **Embedding** HOA model only over prescribed region (gray square) around Dome Fuji, with the same spatial resolution as SIA
- Trial: 25kyr experiment starting from SIA result

Need to investigate further....

SAITO Fuyuki et al. *I_CIES* for Ice-core topics

May 6 2020 19/34

Brief summary on HOA embedding

- Higher-order ice flow computation is being implemented
- Just tested for simple cases

 \rightarrow To develop further

Development steps

- Dating with high accuracy under prescribed flow history
- 2 HOA flow velocity over **prescribed** summit region
- \Rightarrow How to define ice divides?

- Divide can migrate according to changes in environments

SAITO Fuyuki et al. I_CIES

*I*_C*IES* for lce-core topics

May 6 2020 20/34

What controls the summit position?

- Weertman (1973)
 Effect of the spatial pattern of accumulation rate
 < Effect of the ice sheet span for the summit position
- Abe-Ouchi et al. (1994)
 The highest point of the ice sheet is not always at the same position; it migrates towards the center for thickening ice.
- Hindmarsh (1996)
 While flow near ice divides cannot be calculated by the shallow-ice approximation (≡ shear-dominant flow), their position can be to the order of the ice-sheet thickness.

SAITO Fuyuki et al.

I_CIES for lce-core topics

May 6 2020 21/34

Experiment configuration: Extent

Sensitivity experiments to prescribed ice-sheet area

- advance/retreat in specific/whole area
- AND bedrock elevation > -800m
- AND grounding line advance {40 ··· 600}km from P
- AND 'holes' are filled up manually

SAITO Fuyuki et al. I_CIES fo

ICIES for Ice-core topics

May 6 2020 22/34

Experiment configuration: Climate

Control: SeaRISE (Nowicki et al., 2013) boundary conditions

- Present-day accumulation (Athern et al. 2006) with modification around Dome Fuji (≃ 2.75 cm/yr) (Satow et al., 1999)
- Surf. temperature: function of lon lat elev (Fortuin and Oerlemans, 1990)

LGM: LGM-like condition

- Constant perturbation from the Control
- Sea level: -128.25 m
- Background temperature: -7.81 K

SAITO Fuyuki et al. *I*_CIES for Ice-core topics

May 6 2020 23/34

Results: Dome Fuji Position sensitivities

Brief summary on Dome Fuji migration

- Potential Dome Fuji migration is examined
- Dome Fuji migration during glacial cycles $\leq 50 \text{ km}$

 \rightarrow Paper in preparation

Development steps

- Dating with high accuracy under **prescribed** flow history
- 2 HOA flow velocity over prescribed summit region
- Summit migration by prescribed ice-sheet extent/climate

 \Rightarrow How to simulate changes in ice-sheet extent?

SAITO Fuvuki et al.

IcIES for lce-core topics

25/34 May 6 2020

Simulation of grounding line migration

Grounding line migration simulation using $I_{C}IES$ with MISMIP configuration(Pattyn et al., 2012) x (km)

Under development.....

SAITO Fuyuki et al.

I_CIES for lce-core topics

May 6 2020 26/34

Summary

A numerical ice-sheet model for ice-core topics has been developed / being developed / will be developed

Development steps and status	
 (GMDD <a>C) 	RCIP dating with high accuracy
(testing)	HOA nesting
(writing)	Summit migration
(pending)	Grounding line migration by ice-ocean interaction
(waiting)	Ice-ocean interaction under ice shelves

Another important issue: application for ice-sheet dynamics

SAITO Fuyuki et al. ICIES for Ice-core topics

May 6 2020 27/34

References I

- Abe-Ouchi, A., Blatter, H., and Ohmura, A.: How does the Greenland ice sheet geometry remember the ice age?, Global and Planetary Change, 9, 133–142, doi: 10.1016/0921-8181(94)90012-4, URL http://www.sciencedirect.com/science/article/ B6VF0-48B09WK-5N/2/ff0cbb89aa27e4c03e62d78b0fa7f9f8, 1994.
- Clarke, G. K. C., Lhomme, N., and Marshall, S. J.: Tracer transport in the Greenland ice sheet: three-dimensional isotopic stratigraphy, Quat. Sci. Rev., 24, 155–171, doi: 10.1016/j.quascirev.2004.08.021, URL http://www.sciencedirect.com/science/article/B6VBC-4DS92J4-1/ 2/611027ceb4e1f74bb87ab3c501239d68, 2005.
- EPICA community members: Eight glacial cycles from an Antarctic ice core, Nature, 429, 623–628, 2004.

SAITO Fuyuki et al. $I_{C}IES$ for Ice-core topics May 6 2020

28/34

References II

- Fischer, H., Severinghaus, J., Brook, E., Wolff, E., Albert, M., Alemany, O., Arthern, R., Bentley, C., Blankenship, D., Chappellaz, J., Creyts, T., Dahl-Jensen, D., Dinn, M., Frezzotti, M., Fujita, S., Gallee, H., Hindmarsh, R., Hudspeth, D., Jugie, G., Kawamura, K., Lipenkov, V., Miller, H., Mulvaney, R., Parrenin, F., Pattyn, F., Ritz, C., Schwander, J., Steinhage, D., van Ommen, T., and Wilhelms, F.: Where to find 1.5 million yr old ice for the IPICS "Oldest-Ice" ice core, Clim. Past, 9, 2489–2505, doi: 10.5194/cp-9-2489-2013, URL http://www.clim-past.net/9/2489/2013/, 2013.
- Fortuin, J. P. F. and Oerlemans, J.: Parameterization of the annual surface temperature and mass balance of Antarctica, Ann. Glaciol., 14, 78–84, 1990.
- Greve, R., Wang, Y., and Mügge, B.: Comparison of numerical schemes for the solution of the advective age equation in ice sheets, Ann. Glaciol., 35, 487–494, doi: 10.3189/172756402781817112, 2002.
- Hindmarsh, R. C. A.: Stochastic perturbation of divide position, Ann. Glaciol., 23, 94–104, 1996.

SAITO Fuyuki et al. *I_CIES* for Ice-core topics

May 6 2020 29/34

References III

- Lhomme, N., Clarke, G. K. C., and Marshall, S. J.: Tracer transport in the Greenland Ice Sheet: constraints on ice cores and glacial history, Quat. Sci. Rev., 24, 173–194, doi: 10.1016/j.quascirev.2004.08.020, URL http://www.sciencedirect.com/science/article/B6VBC-4DW2PC8-2/ 2/bff5252dbfb42af719bb6eeccb59bf05, 2005.
- Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ¹⁸O records, Paleoceanography, 20, doi: 10.1029/2004PA001071, URL http://dx.doi.org/10.1029/2004PA001071, pA1003, 2005.
- Mügge, B., Savvin, A., Calov, R., and Greve, R.: Numerical Age Computation of the Antarctic Ice Sheet for Dating Deep Ice Cores, in: Advances in Cold-Region Thermal Engineering and Sciences, edited by Hutter, Y. W. K. and Beer, H., pp. 307–318, Springer, 1999.

SAITO Fuyuki et al. $I_{C}I\!ES$ for Ice-core topics

May 6 2020 30/34

References IV

- Nowicki, S., Bindschadler, R. A., Abe-Ouchi, A., Aschwanden, A., Bueler, E., Choi, H., Fastook, J., Granzow, G., Greve, R., Gutowski, G., Herzfeld, U., Jackson, C., Johnson, J., Khroulev, C., Larour, E., Levermann, A., Lipscomb, W. H., Martin, M. A., Morlighem, M., Parizek, B. R., Pollard, D., Price, S. F., Ren, D., Rignot, E., Saito, F., Sato, T., Seddik, H., Seroussi, H., Takahashi, K., Walker, R., and Wang, W. L.: Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica, J. Geophys. Res. Earth Surf., 118, 1002–1024, doi: 10.1002/jgrf.20081, URL http://dx.doi.org/10.1002/jgrf.20081, 2013.
- Parrenin, F., Dreyfus, G., Durand, G., Fujita, S., Gagliardini, O., Gillet, F., Jouzel, J., Kawamura, K., Lhomme, N., Masson-Delmotte, V., Ritz, C., Schwander, J., Shoji, H., Uemura, R., Watanabe, O., and Yoshida, N.: 1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica, Clim. Past, 3, 243–259, 2007.

 \bigcirc SAITO Fuyuki et al. I_{CIE}

*I*_C*IES* for lce-core topics

May 6 2020 31/34

References V

Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler, E., de Fleurian, B., Durand, G., Gagliardini, O., Gladstone, R., Goldberg, D., Gudmundsson, G. H., Huybrechts, P., Lee, V., Nick, F. M., Payne, A. J., Pollard, D., Rybak, O., Saito, F., and Vieli, A.: Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP, The Cryosphere, 6, 573–588, doi: 10.5194/tc-6-573-2012, URL http://www.the-cryosphere.net/6/573/2012/, 2012.

- Rybak, O. and Huybrechts, P.: A comparison of Eulerian and Lagrangian methods for dating in numerical ice-sheet models, Ann. Glaciol., 37, 150–158, doi: 10.3189/172756403781815393, 2003.
- Saito, F. and Abe-Ouchi, A.: Modelled response of the volume and thickness of the Antarctic ice sheet to the advance of the grounded area, Ann. Glaciol., 51, 41–48, 2010.
- Saito, F., Abe-Ouchi, A., and Blatter, H.: Effects of first-order stress gradients in an ice sheet evaluated by a three-dimensional thermomechanical coupled model, Ann. Glaciol., 37, 166–172, 2003.

SAITO Fuyuki et al.

I_CIES for lce-core topics

May 6 2020 32/34

References VI

- Saito, F., Obase, T., and Abe-Ouchi, A.: Implementation of RCIP scheme and its performance for 1D age computations in ice-sheet models, Geosci. Model Dev. Discuss., doi: 10.5194/gmd-2020-53, URL https://www.geosci-model-dev-discuss.net/gmd-2020-53/, 2020.
- Satow, K., Watanabe, O., Shoji, H., and Motoyama, H.: The relationship among accumulation rate, stable isotope ratio and surface temperature on the plateau of East Dronning Maud Land, Antarctica, Polar Meteorol. Glaciol., 13, 43–52, 1999.
- Tarasov, L. and Peltier, W. R.: Greenland glacial history, borehole constraints, and Eemian extent, J. Geophys. Res., 108, 2143, doi: 10.1029/2001JB001731, URL http://dx.doi.org/10.1029/2001JB001731, 2003.
- Weertman, J.: Position of ice divides and ice centers on ice sheets, J. Glaciol., 12, 353–360, 1973.
- Xiao, F., Yabe, T., and Ito, T.: Constructing oscillation preventing scheme for advection equation by rational function, Comp. Phys. Comm., 93, 1–12, doi: 10.1016/0010-4655(95)00124-7, URL http:

//www.sciencedirect.com/science/article/pii/0010465595001247, 1996.

⁷ SAITO Fuyuki et al. I_CL

I. I_CIES for Ice-core topics

May 6 2020 33/34

References VII

Yabe, T., Ogata, Y., Takizawa, K., Kawai, T., Segawa, A., and Sakurai, K.: The next generation CIP as a conservative semi-Lagrangian solver for solid, liquid and gas, Journal of Computational and Applied Mathematics, 149, 267–277, doi: http://dx.doi.org/10.1016/S0377-0427(02)00535-6, URL http: //www.sciencedirect.com/science/article/pii/S0377042702005356, scientific and Engineering Computations for the 21st Century - Methodologies and Applications Proceedings of the 15th Toyota Conference, 2002.

ICIES for Ice-core topics

May 6 2020 34/34

