

Frederik Link; Georg Rümpker, AlpArray Working groups

The mantle flow below the Alps from isolated mantle anisotropy based on differential Ps – XKS Splitting

EGU General Assembly 2020 | Online

Goethe University Frankfurt Faculty 11, Geosciences/Geophysics link@geophysik.uni-frankfurt.de

© Frederik Link, Georg Rümpker. All rights reserved

4. Mai 2020

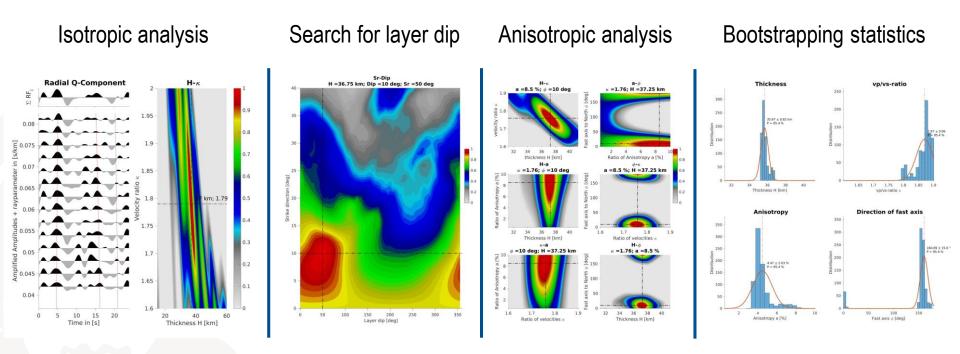
Seismic anisotropy – a proxy for mantle deformation and flow

Motivation for our study:

- Observation of mantle flow below the alps using XKS-splitting measurements
- Complex pattern due to collision?

Difficulties:

- Determination of depth of the anisotropic origin
- Influence of crustal anisotropy

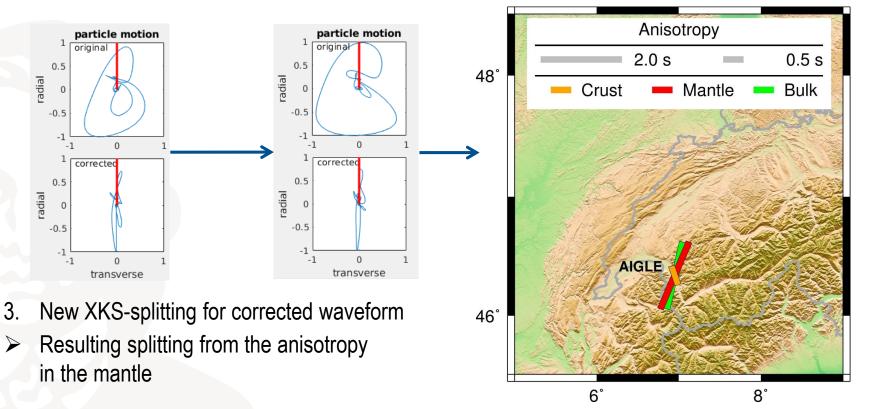

Main goals:

- Separation of the crustal influence by analysing Ps-phases using Receiver Functions
- Measuring and interpreting XKS-measurements using the known crustal contribution

Combining XKS- and Ps-Splitting analysis – A sequential approach

The crustal anisotropy from Ps-splitting

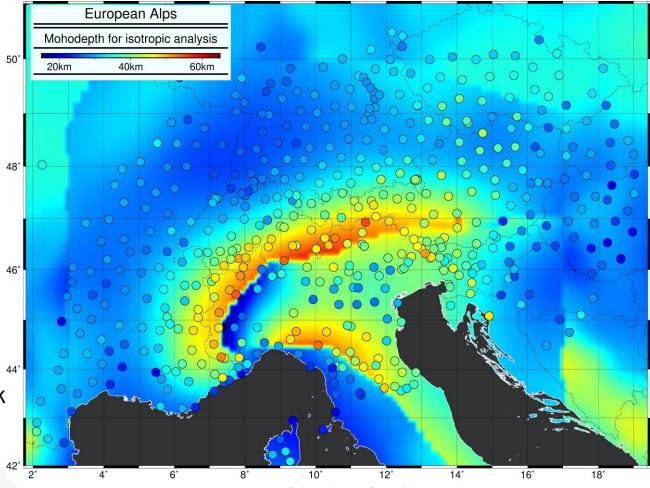
Crustal anisotropy isolated


- Considering layer dip of the Moho-discontinuity
- > Considerable strength (4% \approx 0.5 seconds splitting time)

Combining XKS- and Ps-Splitting analysis – A sequential approach

Mantle anisotropy from corrected XKS-waveforms

- 1. XKS-splitting performed with automated SplitRacer
- 2. Correction of the XKS-waveform using the known crustal layer (inverse splitting)


 $\ensuremath{\mathbb{C}}$ Frederik Link, Georg Rümpker. All rights reserved

Application on the AlpArray network – Preliminary results

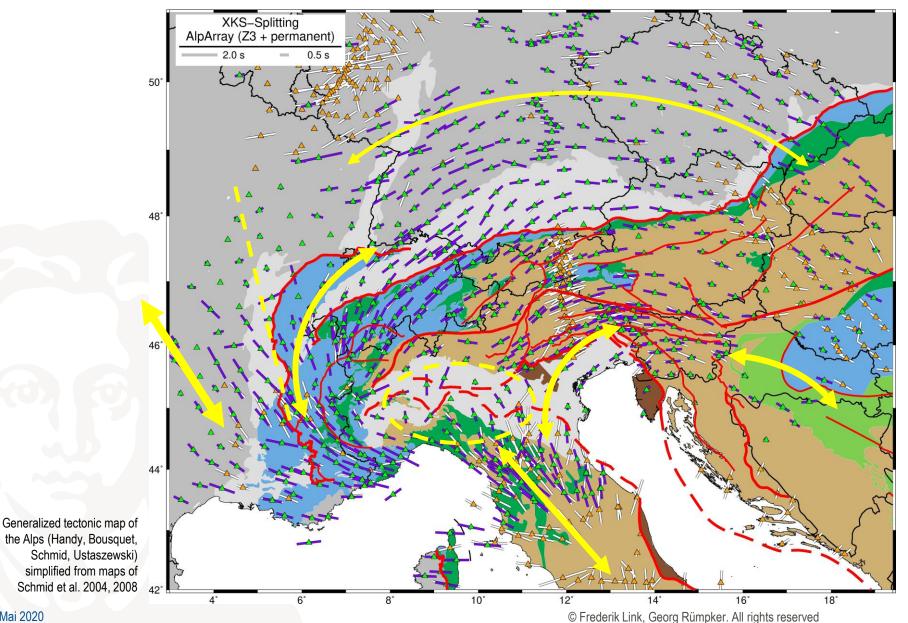
Moho depth from isotropic analysis

- Similar patterns for crustal thickness as former studies (Spada et al. 2013; Tesauro et al. 2008)
- deviations at
- Po-basin
- the transition of the Eastern Alps to the Carpathians and the Bohemian Massif
- High resolution due to 44° dense AlpArray-network

Application on the AlpArray network – Preliminary results

Crustal anisotropy

- Symmetry axis varies strongly even in short distances
- Mostly below 0.2 s
- Increasing splitting time up to 0.7 s to collision zones
- Originated by isolated crystalline blocks?
- Minor impact on XKSsplitting


Generalized tectonic map of the Alps (Handy, Bousquet, Schmid, Ustaszewski) simplified from maps of Schmid et al. 2004, 2008

© Frederik Link, Georg Rümpker. All rights reserved

Application on the AlpArray network – **Preliminary results (Joint analysis)**

4. Mai 2020

Application on the SWATH-D network – Preliminary results

SWATH-D Joint Splitting

Objective:

- Signatures for subduction polarity switch in Anisotropy?
- Laterally small scale anomalous jump of fast axis polarizations?

Generalized tectonic map of the Alps (Handy, Bousquet, Schmid, Ustaszewski) simplified from maps of Schmid et al. 2004, 2008

Conclusion and outlook

Receiver functions:

- Stable isolation of crustal anisotropy
- Maximum delay time 0.7 s (mostly below 0.2 s)
- Only minor effects on XKS-splitting
- Strong variation in short distances
- Local cristalline blocks with oriented intrinsic anisotropy

Further Tasks

- Update of receiver function data and XKS-Splitting
- Analyze complexities in the XKS-measurements

XKS-splitting

- Following plate boundaries
- Complex pattern below Po-Basin
- Mantle flow strongly affected by subducting slabs
- Evidence for a slab gap in transition to the dinarides

© Frederik Link, Georg Rümpker. All rights reserved