

EGU2020

TCV-like event induced by positive-negative pulse pair of solar wind dynamic pressure

A.M. Tian, A.W.Degeling, Q.Q. Shi, Z.Y. Xing

Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai, Shandong, 264209, China.

Email: tamin@sdu.edu.cn

2020/05

Outline

- Introduction
- Observations
 - Ground, magnetosphere
 - Radar
- Simulation results
- Summary and conclusions

Introduction

- Travelling Convection Vortex-like(TCV-like) events excited by **Step function-like increase/decrease** of solar wind dynamic pressure(Pd) have been reported and widely analyzed by observations and simulations[Tamao, 1964a, 1964b; Araki,1994; Fujita et al., 2003A, 2003b; Shi et al., 2014; Zhao et al., 2015; Sun, et, al., 2015; Kim et al., 2015; Tian, et, al., 2016].
- Interplanetary current sheets, HFAs, and sheath jets are frequently observed in the solar wind, near the bow shock and in the magnetosheath [Winterhalter et al.,1994, Zhang et al.,2009; Zhang et al., 2010; Wang et al., 2013; Plaschke et al.,2013]. All these phenomena may be accompanied with global or local **positive-negative pulse pairs** of dynamic pressure.
- How will the magnetosphere and ionosphere respond? Are the positivenegative pulse pairs related to TCVs?

Observations: 2010-10-01 event

Solar wind positive-negative dynamic pressure pulse pairs

TCV-like events

Current vortex scale and intensity

1. Duskside vortex

- 12:35UT:
- ~1000×2000km, anticlockwise(upward FAC)
- Centered at ~ 14:00MLT, 75MLAT
- ~1.65km/s poleward moving
- Current density: several 0.01µA/m²
- 12:41UT:
- Similar scale, movement but with opposite rotation direction
- 2. Dawnside vortex
- Across more than 6MLT, in opposite rotation sense to the duskside vortex

Date/time: 01-11-2010; 12:30:00 UT

2D equivalent current plot(eastward) provided by the IMAGE Network From http://space.fmi.fi/MIRACLE/iono_2D.php

Duskside vortex confirmed by SuperDARN data(1)

First vortex: clockwise, 12:34-12:36UT

PYK observations

Duskside vortex confirmed by SuperDARN data(2)

Second vortex: anticlockwise, 12:42-12:44UT

PYK observations

The link between TCV-like event and magnetospheric convections Magnetosphere

Magnetosphere flow(THA):

Simulation results by BATSRUS model

Summary and Conclusions

In this work, geomagnetic data, radar data and satellite data as well as global simulation are used to study the response process of the ground/ionosphere to an positive-negative dynamic pressure pulse pairs in detail.

- It shows that an ionospheric TCV-like event with a duration time of 6-7min was induced by a solar wind dynamic impulse with the same duration time. The TCV-like event consist of two pairs of ionospheric vortices: the first pair of vortices rotate clockwise in the dawnside and anticlockwise in the duskside; the second pair of vortices rotate anticlockwise near the noon sector and clockwise in the duskside.
- •Global simulation generally reproduced the observed response process:
 - Compression → magnetosphere dawn/dusk flow vortices → ionosphere dawn/dusk current vortices.
 - Expansion → magnetosphere dawn/dusk flow vortices in opposite sense of rotation → ionosphere dawn/dusk current vortices in opposite sense of rotation.

This study provides a way to understand how the momentum and energy injects to the ionosphere after spike-like dynamic pressures striking on the magnetopause.

Thank you!

