

Mobilization of P from crystalline and amorphous Fe- and Al-hydroxides

Stella Gypser, Dirk Freese

Introduction

In neutral to acidic soils, the availability of phosphorus (P) is affected by its strong affinity for mineral surfaces. Especially the interaction between P and ironand aluminum-(oxy)hydroxides (Fe- and Al-hydroxides) plays a crucial role in the immobilization and hence, availability of P for plants. In this context, the fixation of P is mainly determined by processes of adsorption, desorption, and precipitation. In that sense, the kinetics and mechanisms of P desorption from synthetic well crystalline goethite (α-FeO(OH)) and gibbsite (γ-Al(OH)₃) as well as from amorphous ferrihydrite (Fe₂O₃·H₂O) and Al-hydroxide (Al(OH)₃) were characterized. The desorption solutions CaCl2, and CaSO4 were chosen as main components of the soil solution, while humic and citric acid were selected as organic ligands following humification or produced by plants in the rhizosphere.

Methods

P Adsorption^{1,2}

- Batch setup at pH 6
- 2-5 mmol I⁻¹ KH₂PO₄
- 16 weeks reaction time
- 10 mmol I-1 CaCl₂

Crystalline

Goethite Gibbsite α-FeO(OH) γ-AI(OH)₃

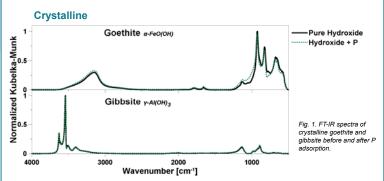
Amorphous

Ferrihydrite Al-Hydroxide Fe₂O₃·H₂O AI(OH)₃

P Desorption³

- Batch setup at pH 6
- 8 weeks reaction time
- 10 mmol I-1 desorption solution

Humic Acid


Citric Acid

Results

Fourier-transform-infrared spectroscopy of P adsorption

Identification of P binding motifs

Goethite

Amorphous

Gibbsite

· Dominant bidentate mono-protonated

Ferrihydrite Fe2O3.H2O

Al-Hydroxide AI(OH)

- Minor monodentate mono-protonated
 - Mainly P surface complexes
- Mono-protonated monodentate

Pure Hydroxide

Hydroxide + P

Fig. 2. FT-IR spectra of

norphous ferrihydrite and Al-hvdroxide before and

- and bidentate
- Mainly P surface complexes

Efficiency and kinetics of P desorption

Characterization of P mobilization

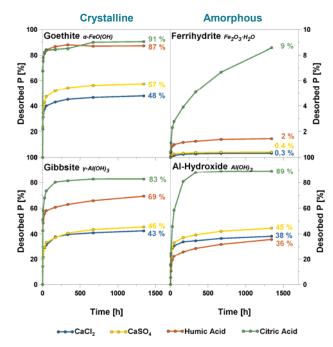


Fig. 3. P description kinetics of goethite, gibbsite, ferrihydrite, and Al-hydroxide at pH 6.

Desorption efficiency: CaCl₂ < CaSO₄ < Humic acid < Citric acid

Normalized Kubelka-Munk

4000

Wavenumber [cm⁻¹] **Ferrihvdrite**

Mainly FePO₄ precipitation

Migration into mineral particles

Al-Hydroxide

- Di-protonated monodentate
- · Mainly P surface complexes

Inorganic compounds

- Anion exchange
- Affect easily available bound P on hydroxide surface (surface complexes)

Organic compounds

- · Citric acid Dissolution
- Humic acid Metal-organic complexes
- Affect also stronger bound P within mineral structure or precipitated

With the aim to enhance the mobility of fertilized or naturally bound P in order to optimize the soil P fertility, the great influence of the crystallinity grade of especially Fe-hydroxides should be taken into account. In particular, the high efficiency of citric acid shows that the mobilization and thus plant-availability of P can be underestimated. The very low P release by using CaCl₂ underlines once again the importance of the accessibility of fertilized or naturally bound P for plant roots, to benefit from the excretion of organic acids as a strategy to enhance the P uptake.

- S. Gypser, F. Hirsch, A. Schleicher, D. Freese (2018): Impact of crystalline and amorphous iron- and aluminum hydroxides on mechanisms of phosphate adsorption and desorption. J. Environ. Sci. 70. 175-189
- ² A. Ahmed, S. Gypser, P. Leinweber, D. Freese, O. Kühn (2019): Infrared spectroscopic characterization of phosphate binding at the goethite-water interface. PCCP 21, 4421-43. Gypser, E. Schütze, D. Freese (2019): Crystallization of single and binary iron- and aluminum hydroxides affect phosphorus desorption. J. Plant Nutr. Soil Sci. 182, 741-750

