Spruce stems and resins constitute a strong sink for methane (CH₄)

Katerina Machacova¹, Thomas Schindler^{1,2}, Ülo Mander^{1,2}, Kaido Soosaar^{1,2}

Contact: machacova.k@czechglobe.cz

Introduction

Woody plants are known to emit methane (CH₄) as an important greenhouse gas into the atmosphere. Recent studies show that tree stems might be also sinks for CH₄; however, the mechanisms of CH₄ uptake and its fate are unknown. Norway spruce (*Picea abies*) is characterised as negligible CH₄ source in boreal forests. Even though spruce trees have been widely planted for its wood in large-scale monocultures in European temperate forests, no studies have focused on their CH₄ exchange potential in the temperate zone.

Research activities and aims

We determined CH_4 exchange of Norway spruce stems, of resins exuded by these stems (covering $4.8 \pm 1.3\%$ of stem area in chambers), and of adjacent soil in a temperate upland forest. We aimed to find out whether and to which extent the spruce stems and resins exchange CH_4 with the atmosphere and how they contribute to the forest CH_4 exchange.

Result 3: Resins consistently consume CH_4 . After calculation of stem fluxes to resin area, the CH_4 uptake rates of stems and resins were in the same order of magnitude (-13.2 and $-12.0 \text{ mg CH}_4 \text{ m}^{-2} \text{ resin}$ area h⁻¹, resp.). The exuded resins are at least coresponsible for the strong CH_4 uptake by spruce stems.

Result 1: Spruce stems can be a strong sink for CH_4 , even if a small amount of resin is present on the bark. In contrast, stem surfaces without visible presence of resins consume CH_4 at negligible rates.

CH₄

CH₄

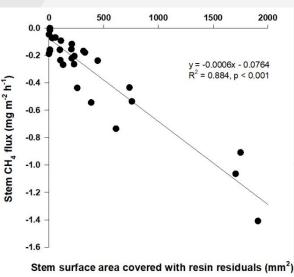
Negligible CH₄ uptake by stems without visible resin residuals (in minority) (-0.007 \pm 0.001 mg CH₄ m⁻² stem area h⁻¹; -33.7 \pm 6.5 mg CH₄ ha⁻¹ ground area h⁻¹)

> Strong CH₄ uptake by soil (-0.150 \pm 0.018 mg CH₄ m⁻² soil area h⁻¹; -1495 \pm 175 mg CH₄ ha⁻¹ ground area h⁻¹)

Conclusion: the spruce resins appear to be strong and until now undiscovered CH_4 sink. Even one small droplet of resins on bark can turn the negligible CH_4 exchange of intact spruce stems into strong CH_4 sinks, having thus severe impact on the overall forest CH_4 balance. This uptake potential of resins should be considered by estimation of forest CH_4 balance especially in areas, where resin bleeding is widely spread or is to be expected (bark-beetle areas, tree harvest, clear-cutting).

CH₄

¹Department of Ecosystem Trace Gas Exchange, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic ²Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, Tartu, Estonia


Acknowledgements

This research was supported by Czech Science Foundation (17-18112Y) and National Sustainability Program I (LO1415). We thank Thorsten Grams, Jan Hrdlička and Thomas Feuerbach for their support.

Experimental design

The measurements were performed at the experimental station Kranzberger Forst near Freising, Southern Bavaria, Germany, in June 2019. Fluxes of CH_4 were measured i) in mature tree stems using non-steady-state stem chamber systems (n=32) installed in stem vertical profiles, ii) in naturally exuded resins sampled from studied stems (n=5) using incubation chambers, and iii) in soil at three position (n=3) using non-steady state soil chambers. Fluxes were detected using a portable greenhouse gas analyser.

Result 2: Stem CH_4 uptake potential increases with increasing stem surface area covered with resin residuals.

Result 4: The CH_4 uptake by predominant spruce stems with resin exudation contributes by 97.1% to the soil CH_4 uptake and can even equally contribute to the forest CH_4 exchange.

Tree stems without visible resin residuals contributes by only 2.4% to the soil CH_4 uptake.

Strong CH₄ uptake by resin residuals (-12.0 \pm 1.7 mg CH₄ m⁻² resin area h⁻¹)

Strong CH₄ uptake by stems with resin residuals \bigcirc (-0.288 ± 0.053 mg CH₄ m⁻² stem area h⁻¹; -1387 ± 257 mg CH₄ ha⁻¹ ground area h⁻¹)