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In a nutshell: Key conclusions

KMI - IRM

The best set of Backward Lyapunov Vectors (BLVS) to build a coupled ocean-
atmosphere forecasting system for long lead times are the ones associated with
near-neutral or slightly negative Lyapunov exponents.

Used alone, these are also providing an appropriate ensemble spread even for the
atmospheric variables, due to the swift rotation of the perturbations toward the
unstable modes (First BLVS)

Their combination with the leading BLVs are key for reliable forecasts at all lead
times

Vannitsem S. & W. Duan, 2020, On the use of near-neutral Backward Lyapunov Vectors to get
reliable ensemble forecasts in coupled ocean-atmosphere systems, submitted to Climate Dynamics
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T} Introduction

The property of sensitivity to initial (and model) uncertainties
at the origin of the degradation of the quality of forecasts of
atmospheric and climate flows

Property already recognized by
Thompson (1957, Tellus) and Lorenz (1963, JAS)

From a mathematical point of view: Poincarée (1888; 1908, Science et methode)
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P4  Climate variability and predictability?

KMI - IRM

Southern Oscillation Index (SOI)

One important signal:
Southern Osclllation Index .,
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0.0

501
105

-1.0

Associated with the development of

El-Nino and La-Nina in the Tropical =0 20
Regions.
El-Nino-Southern-Oscillation (ENSO)

Jam 1880 Jan 1870 Jan 1880 Jam 1980 Jan 2000 Jan 2010 Jan 2020

https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/
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Anomaly (deg C)

Ensemble forecasts

NINO3.4 SST anomaly plume
ECMWEF forecast from 1 Aug 2019

Monthly mean anomalies relative to NCEP OIv2 1981-2010 climatology

——System 5
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Jul Iﬂuglﬁeplﬂﬂt "Nov Dec Jan IFe-lzrlr'.;'larlJ—"u.r_'mr
2019

From ECMWF Website
www.ecmwf.int

One example of ensemble

Forecast of Nino3.4 SST anomaly



D4 Skill score
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NINO3.4 SST rms errors
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M

Aim of the work

Discuss the development of ensemble forecasts in coupled Ocean-
Atmosphere models.

In particular: What is the best strategy for perturbing the ensembles
To get reliable forecasts for both the Ocean and the Atmosphere
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The Reduced-order coupled model

KMI - IRM

- QG mode| fOI’ bOth the @Gﬂ‘ P?{ﬂux boundary conditions L|J%
ocean and the atmosphere \ ’

g3

a+ l'I"O

| 0< x/L < 2n/n !

Vannitsem et al, 2015, Physica D, 309, 71-85, 2015, (VDDG)
De Cruz et al 2016, Geosci. Model Develop, 9, 2793-2808, 2016. (MAOOAM)



KMi - IRM Latitudinal dependence

of the radiative input Surface friction strength
d C
R, + CyV2 cos y 5= — =
/ fo  PHf,
NET SHORTWAVE LONGWAVE SURFAC_E DYNAMICS
* FLUXES 0 hPa
Ril (1= E:lmﬂT: E”UET:: ¥ ) W 11
atm
-—
' 15 500 hPa
ATMOSPHERE
R, ol keﬂuﬂrj [ MT,-T,}
Y

e A A A A A A A A .
OCEAN Rauaiative + heat fluxes 1000 hPa

Fic. 2. Diagram of simple energy balance model on which Eqs. (1)
and (2) are based. See appendix A for definition of symbols.

Barsugli & Battisti, 1998, JAS




Building a reduced order coupled ocean-atmosphere model

""s“‘&“';"“% = SN
e SN
X W 2 RN

R NN
S 2 LR
LR

For the atmosphere
For the ocean

4 8 8
’t]ﬂ":' — Z ’{;E"ﬂ-,ifﬁ’h 6T, = Z T.;.__j{f?i.
i—=1

i=1
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The model Is available on Github

The latest version of MAOOAM:

Arbitray number of modes can be fixed

Currently new development of a version in Python (Jonathan Demaeyer)
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Two types of chaotic solutions

Investigated
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Experimental setup for ensemble forecasts

Initial error: Random
Number of ensemble members: 20
Number of realizations on the attractor of the system: 1000

No model error 't

What are the (un)stable directions
that are important for ensemble
forecasts in multiscale systems?

Use of the Backward Lyapunov vectors to perturb the initial state
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.‘ Experimental setup

There are 36 Backward Lyapunov vectors that can be considered

Experiments of ensemble forecasts with a set of Backward Lyapunov

Vectors:

10 dominant ones — Random errors projected on
these vectors

11 to 20 —

21 to 30 —

36 : The reference experiment since it is equivalent to
the full reliable ensemble

| 15
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Perfectly reliable ensemble!

Mean Square Error of the ensemble mean =
variance of the ensemble

Error

Results for the experiment
With perturbations along all
Backward Lyapunov Vectors

This experiment is the reference!
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Perturbations based

Lyapunov vectors

Perturbations based on the 11 to 20

Lyapunov vectors
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A bit more tuning by changing the amplitude of the perturbations for the 11-20 LVs?
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Additional considerations

For the solution with the low-frequency variability, the picture is very similar.

For long term forecasts, the use of the near-neutral and slightly negative Backward
Lyapunov Vectors is key.

Use of the Dawid-Sebastiani score (Dawid and Sebastiani, 1999), the lower the better
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Conclusions

The analysis of the ensemble forecasts based on the Lyapunov vectors reveals

KMI - IRM

- The best subspace in which to perturb the fields is NOT the most unstable one, because
it fails to capture the variability within the ocean

- Perturbing the slow modes (near-neutral and slightly negative ones) seems to be a good
approach. The atmosphere is anyway filled by the perturbations because of its fast time scales,
and the rapid rotation of the perturbations along the most unstable directions.

Combining the perturbations along the unstable directions, the near neutral modes and the slightly

Negative ones is a good option in this reduced-order model. This should be investigated in more
Detailed coupled ocean-atmosphere models.
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