
Studies show evidence of a damaged zone surrounding fractures and faults.

Enhanced permeability associated with damaged zones, in an otherwise largely 
impermeable background rock, can promote fluid pressure diffusion (FPD) from 
fractures as seismic waves travel through the system. This process is expected to 
increase normal compliance of fractures and, in turn, raise their seismic reflectivity.

We calculate reflectivity of a normally-incident P-wave for layered elastic-
poroelastic models. In these models, we represent the fracture and associated 
damaged zone as poroelastic layers. We also consider a model in which the 
fracture and associated damaged zone are represented by an equivalent 
viscoelastic (EVE) layer. This representation facilitates the incorporation of 
complex damaged zone models, e.g. containing discrete fractures. We also 
calculate normal compliance of the fracture for each model.
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Our results show that FPD between a fracture and its adjacent DZ increases fracture 
normal compliance as FPD allows fluid pressure release from the fracture into the DZ. 
As a consequence, the reflectivity of the system also increases when compared to an 
impermeable reference model. Furthermore, our results also show that the values of 
the normal compliance and reflectivity are controlled by the DZ thickness and 
permeability.

On the other hand, the viscoelastic upscaling of the set comprised by the poroelastic 
fracture and the two associated poroelastic DZ layers reproduces the mechanical 
response of this poroelastic set. This, in turn, would facilitate the incorporation of 
more complex DZ representations.

Overall, this study shows that FPD effects promoted by the presence of a DZ in an 
otherwise impermeable rock can enhance the reflectivity of a fracture in the seismic 
frequency band.

We compute the reflection coefficients at the F-Bg interface (Figure 2a), the DZ-
Bg interface (Figure 2b) and Bg-EVE interface (Figure 2c),  respectively. To find 
the corresponding seismic amplitudes, we formulate a system of equations by:
- Imposing continuity of traction, pressure, and solid and relative fluid 
displacements at the poroelastic interfaces (Biot, 1962; Barbosa et al., 2016).
- Imposing continuity of traction and solid displacement with zero relative fluid 
displacement at the elastic-poroelastic interfaces.
- Imposing continuity of traction and displacement at the elastic interfaces and 
elastic-viscoelastic interfaces.

To obtain the EVE layer (Figure 2c), we perform an uspcaling of the poroelastic 
fracture and associated damaged zones following the analytical technique 
proposed by White et al. (1975).

Moreover, we calculate normal compliance for the elastic and poroelastic fractures 
by taking the displacement jump over the average traction at the boundaries of the 
fracture layer (Schoenberg, 1980). We also calculate normal fracture compliance 
for the viscoelastic upscaled model following the extension to the aforementioned 
Schoenberg's defintion as proposed by Rubino et al. (2015). 

Figure 1. Macrofracture 
density versus distance from 
fault core. Modified from 
Mitchell and Faulkner (2009).
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Figure 2. (a) Reference model,  (b) model with damaged zones and (c) model with upscaled  fracture and 
associated damaged zones represented by an EVE layer. Bg is the elastic background rock, DZ is the 
damaged zone and F is the fracture. For model (b), DZ and F are poroelastic layers. Dp  and Up are the 
normally-incident and the reflected P-waves, respectively.

a)  Elastic model b)  Elastic-poroelastic model

Results
Table 1. Reference values of  rock and fluid 
properties of the poroelastic thin layer 
representing the fracture and the associated 
DZ layers. For the elastic background and 
fracture we use the fluid and drained rock 
properties of the DZ and poroelastic fracture, 
respectively. We also use Gassmann's 
equations to obtain other elastic properties. 
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Figure 4. Absolute value of reflectivity |R
PP

| for 

a normally-incident P-wave as a function of 
frequency  for different DZ thicknesses hr .
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c)  Elastic-viscoelastic model

Figure 3. Absolute value of reflectivity |R
PP

| for 

a normally-incident P-wave as a function of 
frequency  for different DZ permeabilities κr .

Figure 3 shows that, compared to the 
elastic model, there is an increase of 
reflectivity for the elastic-poroelastic 
models of approximately one-order 
magnitude as a consequence of FPD. 
FPD allows fluid pressure release from 
the fracture as the pressure equalizes. 
This, in turn, increases normal fracture 
compliance (Figure 5) and raises the 
reflectivity of the system. Observe that, 
for the given thickness of 0.2 m, there is 
an upper limit for |R

PP
| regardless of the 

permeability κr. This happens because 
the DZ thickness  provides a limited 
pore volume for FPD to occur in its 
relaxed state. Please note that the 
permeability κr  controls the transition 
frequency f

dm
, at which reflectivity 

decreases towards its undrained 
values.

Figure 4 shows that reflectivity increases with  
hr. This occurs because a larger DZ thickness 
provides more pore volume for FPD to happen 
in its relaxed regime. On the other hand, an 
increase in DZ thickness shifts the 
characteristic transition frequency f

dm 
towards 

lower values. 
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Figure 5. (a) Real and  (b) imaginary parts of 
normal fracture compliance Z

N
 as a function of 

frequency for different DZ permeabilities κr.

Figure 5 shows that, as expected, the elastic 
normal compliance is constant for all frequencies. 
In contrast, the poroelastic normal compliance 
values become complex and frequency-
dependent as the FPD regime transitions from the 
relaxed to the unrelaxed state. Notice that for 
sufficiently low frequencies, normal compliance is 
highest since the fracture experiences the 
maximum deformation while the maximum fluid 
exchange occurs between the DZ and the 
fracture. Note that there is an upper limit  value 
regardless of the DZ permeability, which is 
constrained by the DZ thickness. This is because 
thickness limits the pore volume available for 
FPD. Please note that the DZ permeability 
controls the transition frequency towards the 
undrained normal compliance.

Figure 6. (a) Absolute value of reflectivity |R
PP

|  and (b) real part of normal fracture compliance Z
N
 as 

a function of frequency for the various models. Superscripts e, p and v denote elastic, poroelastic and 
viscoelastic media, respectively. Values of rock and fluid properties are taken from Table 1.
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Figure 6 shows that the upscaled elastic-viscoleastic model reproduces fairly well the reflectivity and 
normal compliance values of the elastic-poroelastic model up to its first resonance frequency (~ 5250 
Hz). The latter results from the scattering created due to the thickness of the equivalent viscoelastic 
layer (Figure 2c). This viscoelastic upscaling reproduces the mechanical behavior of the set 
comprised by the poroelastic fracture and the two associated poroelastic DZ layers. In general, the  
upscaled parameters are frequency-dependent moduli. For this particular 1D case, we obtain the 
frequency-dependent plane-wave modulus. This upscaling procedure is useful for including complex 
DZ representatios, e.g including fractures, for which numerical upscaling methods can be applied.  
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