

SATURN LIGHTNING ACTIVITY FROM A CYCLONE AT 50° NORTH LATITUDE

Georg Fischer¹ and Jacob Gunnarson²

¹Space Research Institute, Austrian Academy of Sciences, Graz, Austria ²Center for Atmospheric Sciences, Hampton University, Hampton, VA, USA

EGU Virtual Meeting, 4-8 May 2020, Session PS 1.3, Planetary, Solar and Heliospheric Radio Emissions

IWF.OEAW.AC.AT

LIGHTNING STORMS AT SATURN

- Radio emissions from Saturn lightning in the high frequency range (above ionospheric cutoff) are called SEDs (Saturn Electrostatic Discharges)
- Measured by Voyager and Cassini radio instruments and from ground (UTR-2 radio telescope) due to their large intensity (10,000 more intense than terrestrial lightning around a few MHz)
- SED storms from 2004-2010 were mostly located at the storm alley at 35°S
- Great White Spot (GWS) from Dec. 2010 to August 2011 was located at 35°N
- SED storms in storm alley had diameters ~2000 km with flash rates of a few SEDs per minute compared to ~10,000 km North-South extension (with longer tail) for the GWS with flash rates up to 10 SEDs per second
- After the GWS (until late 2013) almost all SEDs came from a cyclone located at 50°North latitude with a diameter of ~3000 km and flash rates of a few SEDs per minute
- 50°N cyclone was observed from 2007 until end of 2013, but its first SED activity was in late December 2010 (during the GWS)

SED ACTIVITY DURING CASSINI'S SATURN TOUR FROM 2004 UNTIL 2017

SEDs per Saturn rotation as a function of year detected by Cassini RPWS throughout Cassini's orbital tour around Saturn. Are the storms after the GWS caused by a storm at 50°N planetocentric latitude? YES!

AMATEUR IMAGES OF 50°N CYCLONE (AND GWS)

SED ACTIVITY OF 50°N CYCLONE Info Hfr 12EuEvExEw DURING GWS

THE CYCLONE AT 50°N LATITUDE

- Cyclone at 50°N is long-lived (mid-2007 to autumn 2013)
- Westward drift of ~0.3°/day (most SED storms drift with 0.2-0.6°/day except GWS with 2.7°/day)

SOME IMAGES OF THE CYCLONE

1/12/2011

SED activity in GWS, maybe not at 50°N cyclone

[All images provided by Jacob Gunnarson]

THE 50 $^{\circ}$ N CYCLONE AND SED ACTIVITY

SED			Storm
storm	Start date	End date	latitude
0	26 May 2004	31 May 2004	35°S ?
А	13 July 2004	27 July 2004	35°S
В	3 Aug. 2004	15 Aug. 2004	35°S
С	4 Sep. 2004	28 Sep. 2004	35°S
D	8 June 2005	15 June 2005	equator?
Е	23 Jan. 2006	23 Feb. 2006	35°S
F	27 Nov. 2007	15 July 2008	35°S
G	19 Nov. 2008	11 Dec. 2008	35°S
Η	14 Jan. 2009	13 Dec. 2009	35°S
Ι	7 Feb. 2010	14 July 2010	35°S
J	5 Dec. 2010	28 Aug. 2011	35°N
K0	28 Dec. 2010	23 Feb. 2011	50°N
K1	27 Sep. 2011	9 Oct. 2011	50°N
K2	26 Dec. 2011	30 Dec. 2011	50°N
K3	26 March 2012	21 Apr. 2012	50°N
K4	15 July 2012	23 July 2012	50°N
K5	8 July 2013	2 Sep. 2013	50°N
K6	12 Oct. 2013	10 Nov. 2013	50°N

Table with all SED storms of Cassini era (name, date, and storm latitude)

SED activity as function of time from end of 2010 until end of 2013: 7 outbreaks (K0-K6) occurred during those 3 years. SEDs from GWS, up to 10⁵ SEDs per hour, are NOT shown. Gray background indicates an RPWS data gap.

WESTERN LONGITUDE RANGE OF SED EPISODES AND 50°N CYCLONE VISIBILITY

SEDs mostly occur when the 50°N cyclone (red line) is visible (white range) from the position of Cassini. Emission angle α defined at position of storm going from local zenith to Cassini. But there is also OTH (over-thehorizon) effect up to α <120°. SED activity from GWS is removed here.

SED EPISODES FROM SUMMER 2013

Emission angle α depends on position of storm in relation to Cassini, whose latitude has a large influence: For high northern latitude, the 50°N cyclone is visible all the time (western longitude range of SED episodes can go up to 360°), whereas for high southern latitudes the 50°N cyclone is invisible all the time. SED episodes of summer 2013 show good match with respect to storm visibility.

SUMMARY

- Long-lived cyclone at 50°N (diameter ~3000 km) was observed by Cassini ISS from mid-2007 until the end of 2013 with a westward drift of ~0.3° per day
- First time it showed SED activity was in late 2010 and early 2011 during a time when the Great White Spot (GWS) raged at 35°N
- It is partly possible to separate the SEDs of the 50°N cyclone (low rate: few SEDs per minute) from the SEDs of the GWS (high rate: up to 10 SEDs per second) due to the different storm longitudes
- There were 6 more outbreaks of SED activity: in autumn 2011, December 2011, spring 2012, July 2012, summer 2013, and autumn 2013.
- Western longitude range of SED episodes is matching the visibility of the 50°N cyclone, so that practically all SEDs after the GWS come from 50°N cyclone
- Last SED episode of Cassini mission was observed on 10 November 2013. Since then, no more SED storms were detected (also not by UTR-2 or ground-based images, even after the end of Cassini mission)
- Paper about 50°N cyclone is in preparation (Gunnarson et al.)
- Final paper about non-detection of Titan lightning submitted to JGR Planets