Global agricultural economic water scarcity

Lorenzo Rosa University of California, Berkeley

Science Advances

RESEARCH ARTICLE | ENVIRONMENTAL SCIENCES

Global agricultural economic water scarcity

Lorenzo Rosa^{1,*}, Davide Danilo Chiarelli², Maria Cristina Rulli², Jampel Dell'Angelo^{3,1} and Paolo D'Odorico¹ + See all authors and affiliations

Science Advances 29 Apr 2020: Vol. 6, no. 18, eaaz6031 DOI: 10.1126/sciadv.aaz6031

🥑 @lorenzorosa1992

Website: lorenzorosa.com

Email: lorenzo_rosa@berkeley.edu

Forbes UNDER 30

Ermenegildo Zegna

Irrigation

- Irrigation dramatically increase crop production
- Largest driver of water scarcity around the world

Definition of unsustainable irrigation

$BLUE WATER SCARCITY = \frac{BLUE WATER CONSUMPTION}{RENEWABLE WATER AVAILABILITY} > 1$

BLUE WATER CONSUMPTION = IRRIGATION + OTHER USES

RENEWABLE WATER AVAILABILITY = RUNOFF - ENVIRONMENTAL FLOWS

Estimating irrigation water demand

Hotspots of unsustainable irrigation

- $\sim 50\%$ of irrigation is unsustainable
- 1.3 billion people are reliant on unsustainable irrigation

Crops and countries contributing to unsustainable irrigation

Rosa et al., 2019 ERL

Unsustainable irrigation in export

15% of unsustainable irrigation is virtually exported

Rosa et al., 2019 ERL

The global food system must:

How can we meet the increasing food demand?

Agricultural Intensification Increase yields (irrigation, fertilizers, seeds)

Many scientists advocate for intensification

Agricultural Intensification

Increase yields (irrigation, fertilizers,...) ...because it avoids habitat destruction ... however, there are negative impacts:

- Unsustainable use of water resources
- Loss of rural livelihoods
- Pollution and biodiversity loss

Croplands can still attain higher crop yields potentially increasing crop production by **45%-70%** *Mueller et al., 2012*

Biophysical factors limiting food production

- Nutrients
- Water is a critical input limiting global food production

Higher crop yields could feed 4 billion more people

Research questions

- Where and to what extent yield gap closure will be constrained by water availability?
- The extent to which irrigation can be expanded within presently rain-fed cropland without depleting environmental flows remains poorly understood

Science Advances

RESEARCH ARTICLE | ENVIRONMENTAL SCIENCES

Global agricultural economic water scarcity

Lorenzo Rosa^{1,*}, Davide Danilo Chiarelli², Maria Cristina Rulli², Jampel Dell'Angelo^{3,1} and Paolo D'Odorico¹ + See all authors and affiliations

Science Advances 29 Apr 2020: Vol. 6, no. 18, eaaz6031 DOI: 10.1126/sciadv.aaz6031

Global croplands

What is the extent of agricultural green water scarcity?

GREEN WATER SCARCITY: When green water is insufficient to sustain unstressed crop production and irrigation is needed to boost yields.

GREEN WATER: Root-zone soil moisture that is available for uptake by plants.

CROP WATER REQUIREMENT: The amount of water needed by a crop to grow in non water stressed conditions.

Agricultural green water scarcity

76% of croplands face GWS

Irrigation

77% of croplands is rain-fed23% of cropland is irrigated

What is the extent of agricultural blue water scarcity?

BLUE WATER SCARCITY = $\frac{BLUE WATER CONSUMPTION}{RENEWABLE WATER AVAILABILITY} >$

BLUE WATER SCARCITY: When irrigation is unsustainable and renewable blue water availability is insufficient to sustainably meet crop water requirements. In these cases, irrigation impairs environmental flows and depletes freshwater stocks

BLUE WATER CONSUMPTION = IRRIGATION + OTHER USES

RENEWABLE WATER AVAILABILITY= RUNOFF – ENVIRONMENTAL FLOWS

Agricultural blue water scarcity

16% of croplands face BWS

Agricultural blue water scarcity

16% of croplands face BWS

23% of croplands is irrigated

What is the irrigation expansion potential?

16% of croplands face BWS

What is the extent of agricultural economic water scarcity?

AGRICULTURAL ECONOMIC WATER SCARCITY: Agricultural economic water scarcity is defined as lack of irrigation due to limited institutional and economic capacity instead of hydrologic constraints. Agricultural economically water scarce croplands are underperforming rain-fed croplands suitable for sustainable irrigation expansion.

Agricultural economic water scarcity

~15% of croplands face EWS (140 Mha)

Regional distribution of agricultural economic water scarcity

THE CASE OF DEFICIT IRRIGATION

Crops are grown under mild water stress conditions with minimal effects on yields

Deficit irrigation

~20% of cropland area +50 Mha EWS 0% deficit irrigation EWS 20% deficit irrigation

Deficit irrigation

~25% of cropland area +50 Mha EWS 0% deficit irrigation
EWS 20% deficit irrigation
EWS 50% deficit irrigation

The role of water storage

Monthly Storage	Annual Storage
(Rosa et al., 2020 Science Adv)	(Rosa et al., 2018 ERL)
+0.8 billion people	+1.9 billion people
+140 Mha	+267 Mha
+150 Km ³	+600 Km ³

Small storage and nature-based solutions (mulching, pitting, no-till farming, terracing)

- Half of irrigation practices are unsustainable
- The notion of **agricultural economic water scarcity** allows to identify the target areas where irrigation expansion may sustainably increase food production
- 0.8-2.8 billion more people can be sustainably feed
- Over 140 million ha of rain-fed croplands are suitable for sustainable irrigation

Thank you

Ermenegildo Zegna

Website: lorenzorosa.com

Email: lorenzo_rosa@berkeley.edu

