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Axisymmetric vortex evolution
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Minimum Surface Pressure
Maximum Surface Wind Azimuthal Wind

Idealized Tropical Cyclone Simulation
Rotunno and Emanuel (1987) axisymmetric hurricane model

Wong, Tailleux and Gray (QJ, 2015)
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Energetics approach: 

• Some fraction of surface fluxes generate available potential energy, rest 
goes into background potential energy

• Part of APE generated gets into kinetic energy, rest goes into APE storage
• Kinetic energy generated eventually dissipates  

Challenge:

Reference state impacts on APE and APE 
generation, but not the APE/KE conversion.

What choice of reference state yields APE 
generation rate equal APE to KE conversion?
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Top down vs bottom-up sorting algorithms (Wong et al., 2016)

See also Harris and Tailleux (2018) for inter-comparison of algorithms for 
computing moist APE
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Reference position

Top Down 

Bottom up 

60 h 120 h
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Top Down

Bottom Up

60 h 120 h

APE production efficiency factor 
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APE PRODUCTION VERSUS DIAGNOSED ENERGY GENERATION 

Wong, Tailleux and Gray (QJ, 2015)
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What about reference state in gradient-wind 
and hydrostatic balance? 

Construct reference state 𝑝! 𝑟, 𝑧, 𝑡 and 𝜌! 𝑟, 𝑧, 𝑡 so that 
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Method: Iterative procedure 
based on successively integrating 

these equations radially and 
vertically

Nolan and Montgomery (2002)
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Impact of reference state on APE production rate 
Bethan Harris

PhD work 

Comparison between 
APE production rate 

predicted using different 
choices of reference 
state and diagnose 

kinetic energy 
generation
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Thermodynamic study of the oceanic and 
atmospheric heat engines (in a steady-state)

Total Energy Budget 
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Aim of thermodynamic heat engine theories
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𝑑𝑚 = 𝑃- − 𝐷-
𝑃- = Thermodynamic Production

𝐷- = Non-Viscous Dissipation
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Entropy budget approach
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APE budget approach

2
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APE production 
by surface 
buoyancy fluxes 

Mechanical 
Energy input by 
Wind

APE dissipation by 
non-viscous mixing 
processes

𝐺-01 ≈ 2
2

𝑇 − 𝑇3
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𝑄#(& 𝑑𝑆 = Υ$%&𝑄$%& − Υ"#𝑄"#

APE production by surface buoyancy fluxes (freshwater fluxes neglected)

05/05/2020



Summary of APE versu Entropy view of 
thermodynamic forcing and dissipation 

PRODUCTION BY 
BUOYANCY FLUXES 

NON-VISCOUS DISSIPATION

ENTROPY APPROACH 𝑇!
𝑇"#
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APE APPROACH Υ,-. 𝑄$%& 𝐷,-.
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Local theory of Available Potential Energy
(Andrews 1981; Tailleux 2018; Novak and Tailleux 2018)

𝐵 = Π + 𝐵'

𝐵 = Φ 𝑧 + ℎ 𝜎, 𝑆, 𝑝 +
𝑝3 𝑧 − 𝑝

𝜌

Π = 𝐵 − 𝐵.

𝐵. = Φ 𝑧. + ℎ 𝜎, 𝑆, 𝑝3 𝑧3

Potential Energy of fluid + Environment

Available Potential Energy density
= Work 

Background Potential Energy density 
= Heat

/
(
Π 𝜌𝑑𝑉 = 𝐴𝑃𝐸)*'+,-
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Local definition of available energy

Π = Φ 𝑧 − Φ 𝑧! + ℎ 𝜎, 𝑆, 𝑝 − ℎ 𝜎, 𝑆, 𝑝! +
𝑝! 𝑧 − 𝑝

𝜌

≈
𝑝 − 𝑝! "

2 𝜌 𝑐 " +
𝑁!"(𝑧 − 𝑧!)"

2

Positive definite. Sum of compressible work + work against 
buoyancy forces to construct actual state from reference 
state by means of adiabatic and isohaline transformation. 
Can be further decomposed into mean/eddy components. 
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Evolution equation for Available Energy density
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APE accounting 
for momentum 
constraints 

• Shepherd (1993): A unified theory of 
available potential energy. AO

• Codoban and Shepherd (2003): Energetics 
of a symmetric circulation including 
momentum constraints. JAS

• Codoban and Shepherd (2006): On the 
available energy of an axisymmetric vortex. 
Met. Zeit.

• Andrews (2006): On the available energy 
density for axisymmetric motions of a 
compressible stratified fluid. JFM

• Tailleux and Harris (2020): The generalized 
buoyancy/inertial forces and available 
energy of axisymmetric compressible 
stratified vortex motions. JFM, in review. 
https://arxiv.org/abs/1911.10333
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Available energetics of axisymmetric motions 
relative to a non-resting balanced vortex state
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Available energetics of axisymmetric motions 
(Tailleux and Harris, 2020)

𝐴 = Π% + Π$ + Π&

Π, = ℎ 𝜂, 𝑝 − ℎ 𝜂, 𝑝- 𝑟, 𝑧 +
𝑝- 𝑟, 𝑧 − 𝑝

𝜌
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$
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Available Acoustic Energy (AEE): Compress/Expand from 𝑝! 𝑟, 𝑧 to p 

Centrifugal Potential Energy (proportional to azimuthal kinetic energy anomaly):
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Slantwise available potential energy (equivalent to SCAPE in a moist atmosphere)

Π1 = A
2∗

2"
𝜈 𝜂, 𝑝3 − 𝜈0 𝜇, 𝑝3 𝑑𝑝3 Integral of local buoyancy along surface of 
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Centrifugal potential energy: Work 
needed to move the fluid parcel from 
intermediate position (𝑟/ , 𝑧/)
isobarically to actual position (𝑟, 𝑧)

Slantwise available potential energy: 
Work needed to move fluid parcel from 
reference position 𝑟∗, 𝑧∗ in balanced 
vortex state along surface of constant 
angular momentum up to intermediate 
position 𝑟/ , 𝑧/

Physical interpretation of available energy relative to vortex reference state
(Tailleux and Harris, 2020)  

Isobaric surfaces:  - - -
Dry entropy surfaces: ____

Angular momentum surfaces: . . . . 
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Available energy and the forces driving the 
secondary circulation 𝑢< = (𝑢,𝑤)

𝐷𝒖5
𝐷𝑡

≈ −∇Π6 − ∇Π( + 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 + …

Gradient of available energy defines the generalized buoyancy/inertial 
force driving the adiabatic component of the secondary circulation! 

𝜇 − 𝜇0
𝑟9

D𝒓 (𝑝𝑢𝑟𝑒𝑙𝑦 𝑟𝑎𝑑𝑖𝑎𝑙)
− 𝜈: − 𝜈- ∇p-

Generalised buoyancy force of 
Smith et al. (2006). Inward and 
upward for positive buoyancy
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Generalised buoyancy force: inward and upward for positive 
buoyancy anomaly  Smith, Montgomery and Zhu (DAO, 2005)

𝑝' 𝑟, 𝑧 = constant

𝑟

𝑧

𝒈( =
𝑣!7

𝑟
+ 𝑓 𝑣!, −𝑔𝑔

𝑣'"

𝑟
+ 𝑓 𝑣'

𝜌' − 𝜌
𝜌

𝑔&

05/05/2020



Evolution equation for Available Energy density
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Sustained positive diabatic heating required to generate positive 
buoyancy anomaly needed to sustain the generalized buoyancy force 
driving the adiabatic secondary circulation. Link with thermodynamic 

`heat engine’ view of tropical cyclones05/05/2020



Equations for the ‘diabatic’ secondary circulation
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Secondary circulation sum of 
diabatic and adiabatic components

𝑢 = 𝑢∗ + 𝛿𝑢
𝑤 = 𝑤∗ + 𝛿𝑤

If reference vortex state evolves 
only slowly, diabatic secondary 

circulation depends only on local 
sinks/sources of entropy and 

angular momentum. Much simpler 
than Eliassen-Sawyer equations. 
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Summary and conclusions
• Theory of available potential energy can be generalized to account for 

momentum constraints => Available energy for perturbations to an 
axisymmetric reference vortex in gradient wind balance
• Available energy is the sum of available acoustic energy, centrifugal 

potential energy and slantwise available potential energy
• Gradient of the centrifugal potential energy and slantwise potential 

energy defines the generalized buoyancy/inertial force driving the 
adiabatic secondary circulation, whose kinetic energy is transferred to 
that of the primary circulation
• Maintenance of such a generalized buoyancy/inertial force required 

sustained positive diabatic heating to sustain positive buoyancy 
anomaly 

05/05/2020



Summary and conclusions (cont’d)
• Available Energy defined relative to a non-resting state is a special case of 

‘eddy’ APE
• Available energy production defined relative to a non-resting reference 

state is a very accurate predictor of kinetic energy creation 
• Assumption of axisymmetry forbids exchanges between ‘eddy’ APE and 

‘mean’ APE. Axysymmetric TC evolution lacks a potentially crucial 
intensification mechanism compared to asymmetric TC evolution, 
consistent with Persing et al. (2013) 
• APE production of generalized APE includes both thermodynamic and 

mechanical production terms 
• Introduction of reference position allows a rigorous decomposition of the 

total circulation into adiabatic and diabatic components. 
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