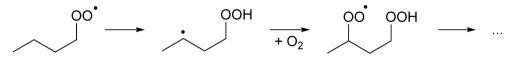
Structure-activity relationships for unimolecular reactions of peroxy radicals, RO₂, at atmospheric temperatures

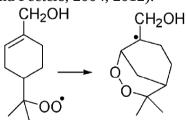
Luc Vereecken,¹ Giang H. T. Vu,² Hue M. T. Nguyen²

¹ Institute for energy and climate research, Forschungszentrum Jülich GmbH, Jülich, Germany

² Faculty of Chemistry and Centre for Computational Science, Hanoi National University of Education, Hanoi, Vietnam


The oxidation of most organic matter in the atmosphere proceeds through a peroxy radical stage, ROO[•], which typically react with NO, HO₂ or other RO₂ compounds. Recently, unimolecular reactions of RO₂ radicals have also been recognized as important reaction channels. We describe a structure-activity relationship (SAR) for H-migration in (substituted) RO₂ radicals, and for ring closure reactions in unsaturated RO₂ radicals.

Presented at the EGU 2020, session AS3.12, Chat session Wed, 06 May, 14:00–15:45


Introduction

The oxidation of most volatile organic compounds (VOCs) emitted to the atmosphere proceeds by radical reaction steps, where peroxy radicals, ROO[•], are critical intermediates formed by addition of O₂ molecules to carbon-based radicals. The chemistry of these RO₂ radicals in high-NOx conditions is well-known, forming alkoxy radicals, RO[•], and NO₂. In low-NOx and pristine conditions, the RO₂ radicals react with HO₂ and other R'O₂ radicals, but can have a sufficiently long lifetime to also undergo unimolecular reactions.

Hydrogen atom migration, forming a hydroperoxide (-OOH) and a new peroxy radical site after addition of an additional O_2 on the newly formed radical site, has been studied extensively in some compounds, such as isoprene where it was shown to be the a critical step in OH radical regeneration (Peeters et al. 2009, 2014), or in the formation of highly oxidized molecules (HOMs).

 RO_2 ring closure reactions have likewise been studied, where e.g. for β -pinene it has been shown to be a critical step governing the yield of the decomposition products such as acetone and nopinone (Kaminsky et al. 2017; Vereecken and Peeters, 2004, 2012).

Unimolecular reactions of RO_2 are known to form or regenerate more reactive OH and HO_2 radicals. They also allow for auto-oxidation of VOCs by a series of sequential rearrangement + O_2 addition events, leading to highly-oxygenated, low-volatility compounds that affect aerosol

formation and growth, and can affect air quality and climate change. As pollution levels drop, the reduced impact of NO_x scavenging of RO_2 enables these unimolecular reactions to become more prominent even outside pristine environments.

Despite the interest in RO₂ unimolecular reactions, and the potential impact on atmospheric chemistry, no widely applicable structure-activity relationships (SARs) have hitherto been proposed to allow systematic incorporation of such unimolecular reactions in gas phase atmospheric kinetic models. Theory-based work has recently enabled the formulation of an extensive SAR for H-migration, and is currently available as a discussion paper in Atmospheric Chemistry and Physics Discussions (Vereecken and Nozière, 2020). We also report results of ongoing SAR development for ring closure in unsaturated RO₂.

H-migration SAR derivation

The training data set consists mostly of a series of theoretical predictions:

Quantum chemical characterizations of reactant and transition states

CCSD(T)/aug-cc-pVTZ // M06-2X/aug-cc-pVTZ

CBS-QB3 // B3LYP/6-31G(d,p)

CCSD(T) // M05-2X/6-311G(d,p)

B3LYP/6-31G(d,p) // B3LYP/6-31G(d,p)

Theoretical kinetic calculations:

Full multi-conformers transition state theory (MC-TST)

Relative multi-conformers transition state theory (rel-MC-TST)

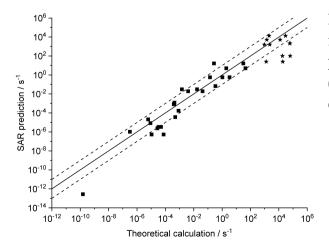
This data set is enhanced by data from a set of extensive studies available in the literature: Finally, a set of experimental measurements of rate coefficient for H-migration described in the literature are used as training or validation data sets.

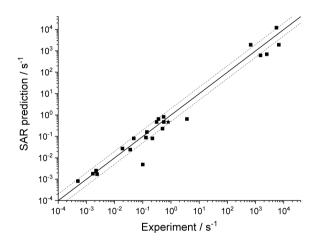
The RO₂ H-migration reactivity trends for the following reaction classes are considered:

 α -substituents : R, OH, C=C, C=O α -substituents : R, OH, ONO₂, =O

Temperature range : 200-450 K

Pressure range : high pressure (no pressure effect is expected in atmospheric conditions)


H-migration SAR structure

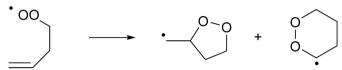

From the above data, the rate coefficients for H-migrations are calculated and tabulated in lookup tables, ordered per migration span, $-OO^{\bullet}$ site substituents, and migrating-H site substituents. If multiple data points are available for a particular combination of SAR parameters, the data is geometrically averaged. For SAR parameter combinations where no direct data is available, the reactivity trend is estimated relative to aliphatic RO_2 substitution patterns. For parameter combinations where data is available only near room temperature, the temperature dependence across the entire T-range is transferred from similar SAR classes. Table 1 gives an example of a lookup table in unsaturated RO_2 , where typically high rate coefficients are predicted. For some reaction classes, the data is scarce, and a formula is preferred, which uses a reference rate coefficient from another table, corrected by a temperature-dependent factor. A full set of tables and correction factors can be found in Vereecken and Nozière (2020).

H-migration SAR performance

The theoretical data on mono-substituted RO₂ constitutes the training data set of the SAR and their comparison against the SAR thus only provides goodness-of-fit metrics that are of less importance. Below, comparisons against more relevant experimental and theoretical data are show.

For the available experimental data, typically multi-functionalized RO_2 , and occasionally outside the temperature range covered by the SAR, the SAR reproduces the measured rate coefficient on average within a factor of two (shown as dotted lines parallel to 1:1 diagonal). Only one significant outlier is found, and the corresponding SAR class was found to be based on the least reliable theoretical data, suggestion further improvements should be readily accessible.

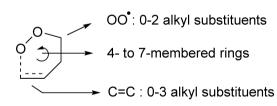
For a validation set consisting of theoretical data for multi-functionalized species, most of the predictions were found to be within a factor 10 (shown as dashed lines parallel to 1:1 diagonal) of the SAR predictions.


H-migration SAR summary

The validation indicate that the SAR should be sufficiently accurate for many atmospheric modeling applications. The SAR also provides a valuable framework for future improvements, based on both experimental and theoretical data.

The fastest H-migrations are typically found for 1,5 and 1,6 H-migrations. Aldehyde functionalities, or double bonds allowing the formation of allylic product radicals greatly enhance the reaction rates, and lead to the highest predicted rate coefficients exceeding 1 s⁻¹.

Ring closure SAR


The current data set for RO₂ ring closure encompasses 4-membered to 7-membered ring formation, with ring closure on both the inside and the outside double bonded carbon.

As expected, formation of 4-membered rings or smaller is found to have large energy barriers exceeding 30 kcal mol⁻¹, and is not competitive in atmospheric conditions. The most energetically favorable ring closures are 5- and 6-membered rings, whereas 7-membered or larger rings become somewhat less favorable both energetically and entropically.

For 5/6-membered rings, the main reactivity trends can be summarized as follows:

- Formation of an exo-cyclic radical site is more favorable than an endo-cyclic radical site
- Alkyl substitution on the COO[•] carbon has very little influence, contrary to H-migration
- Each alkyl substituent on the -CH=CH₂ group reduces the barrier by about 1.5 kcal mol⁻¹
- The reaction rates at 298K ranges from 10^{-2} to 10^{3} s⁻¹
- The reactions are about thermoneutral

The rate coefficients are comparable to, or exceeding, those of H-migration in many cases, suggesting that ring closure in unsaturated RO_2 can likewise be competitive in pristine or mildly polluted atmosphere. The product radical formed will rapidly react with O_2 , forming a cycloperoxide-peroxy radical; at room temperature the reverse ring opening is not expected to be competitive.

General conclusions

As long as the co-reactant concentrations of HO₂/RO₂/NO for RO₂ bimolecular reactions are not overly high, both H-migration and ring closure reactions are viable pathways in the oxidation of VOCs in the atmosphere. The presence of multiple double bonds in most of the non-methane VOCs emitted (isoprene, monoterpenes,...) enhances the autoxidation rate significantly. These reaction channels can thus influence the formation of highly oxygenated molecules and aerosols, as well as OH and HO₂ radicals, with repercussions for the oxidative capacity of the atmosphere, air quality, and climate change.

References

- Kaminski, M., Fuchs, H., Acir, I.-H., Bohn, B., Brauers, T., Dorn, H.-P., Häseler, R., Hofzumahaus, A., Li, X., Lutz, A., Nehr, S., Rohrer, F., Tillmann, R., Vereecken, L., Wegener, R. and Wahner, A.: Investigation of the β-pinene photooxidation by OH in the atmosphere simulation chamber SAPHIR, Atmos. Chem. Phys., 17(11), 6631–6650, doi:10.5194/acp-17-6631-2017, 2017.
- Peeters, J., Nguyen, T. L. and Vereecken, L.: HOx radical regeneration in the oxidation of isoprene, Phys. Chem. Chem. Phys., 11(28), 5935–5939, doi:10.1039/b908511d, 2009.
- Peeters, J., Müller, J.-F. J., Stavrakou, T. and Nguyen, V. S.: Hydroxyl Radical Recycling in Isoprene Oxidation Driven by Hydrogen Bonding and Hydrogen Tunneling: the Upgraded LIM1 Mechanism, J. Phys. Chem. A, 118(38), 8625–8643, doi:<u>10.1021/jp5033146</u>, 2014.
- Vereecken, L. and Nozière, B.: H-migration in peroxy radicals under atmospheric conditions, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1164, in review, 2020.
- Vereecken, L. and Peeters, J.: Nontraditional (Per)oxy Ring-Closure Paths in the Atmospheric Oxidation of Isoprene and Monoterpenes, J. Phys. Chem. A, 108(24), 5197–5204, doi:<u>10.1021/jp049219g</u>, 2004.
- Vereecken, L. and Peeters, J.: A theoretical study of the OH-initiated gas-phase oxidation mechanism of β-pinene (C₁₀H₁₆): first generation products, Phys. Chem. Chem. Phys., 14(11), 3802–3815, doi:10.1039/c2cp23711c, 2012.

Table 1: Example lookup table from the SAR, predicting rate coefficients for allylic H-migration in peroxy radicals with a double bond outside the TS ring, accounting for all abstractable H-atoms in the group. See Vereecken and Nozière (2020) for lookup tables for other substitution patterns.

.

		_00•	•	• 00H	l
	R ₁ R ₃	R ₄		$ $ \land R_1 R_3 R_4	
Substitution pattern		k(298 K) / s ⁻¹	k(200-450K) = A × (T/K) ⁿ × exp(-Ea / T)		
H-atom	-00*		A / s ⁻¹	n	E_a / K
		1,4-H-mi	gration		
=CCH ₂	-CH ₂ OO•	1.56×10 ⁻⁵	9.82E+01	2.65	9172
	>CHOO• ^{a,b}	7.72×10 ⁻⁶	9.82E+01	2.65	9382
	>C(OO•)- ^{a,b}	2.55×10 ⁻⁵	9.82E+01	2.65	9026
=CCH<	-CH ₂ OO• ^a	9.52×10 ⁻⁵	9.82E+01	2.65	8634
	>CHOO• ^{a,b}	7.50×10 ⁻⁴	9.82E+01	2.65	8019
	>C(OO•)- ^{a,b}	8.66×10 ⁻³	9.82E+01	2.65	7290
		1,5-H-mi	gration		
=CCH ₂	-CH ₂ OO•	$2.71 \times 10^{\circ}$	5.52E-47	18.56	-525
	>CHOO• a,b	2.58×10 ⁻²	6.10E-25	11.23	3540
	>C(00 •)-	4.60×10 ⁻⁵	6.74E-03	3.9	8104
=CCH<	$-CH_2OO^{\bullet}$ a	6.15×10 ⁻¹	6.10E-25	11.23	2595
	>CHOO• ª	$1.87 \times 10^{\circ}$	6.10E-25	11.23	2263
	>C(OO•)- ^{a,b}	1.30×10 ⁻²	6.10E-25	11.23	3744
		1,6-H-mi	gration		
=CCH ₂	-CH ₂ OO•	2.04×10 [°]	8.49E-55	20.84	-1928
	>CHOO• a,b	7.68×10 ⁻²	7.71E-37	15.05	1531
	>C(00•)-	$4.27 \times 10^{\circ}$	7.72E-46	17.86	-1061
=CCH<	$-CH_2OO^{\bullet}$ a	7.39×10 ⁻¹	7.71E-37	15.05	857
	>CHOO• ^{a,b}	$6.69 \times 10^{\circ}$	7.71E-37	15.05	200
	>C(00 .)-	4.17×10 ⁻³	6.99E-10	6.43	6275
		1,7-H-mi	gration		
=CCH ₂	-CH ₂ OO•	8.22×10 ⁰	4.62E-48	18.62	-1503
	>CHOO• a,b	2.55×10 ⁻²	4.62E-48	18.62	219
	>C(OO•)- ^{a,b}	5.70×10 ⁻³	4.62E-48	18.62	665
=C-CH<	$-CH_2OO^{\bullet}$ a	3.56×10 ⁻¹	4.62E-48	18.62	-568
	>CHOO• ^{a,b}	$2.27 \times 10^{\circ}$	4.62E-48	18.62	-1120
	>C(OO•)- ^{a,b}	4.30×10 ⁻¹	4.62E-48	18.62	-624

^a Averaged temperature-dependence from other reactions used

^b k(298 K) anchor value derived from relative rates of aliphatic RO₂, scaled to unsaturated RO₂

