

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Identifying sources of changed precipitation in paleoclimate studies through moisture tracking

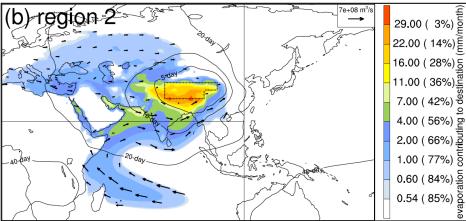
A case study for orbital extremes over the Mediterranean Sea

Ruud van der Ent^{1,2}, Joyce Bosmans^{2,3}, Rein Haarsma⁴, Sybren Drijfhout^{2,4,5}, and Frits Hilgen² ¹Delft University of Technology, Netherlands (r.j.vanderent@tudelft.nl) ²Utrecht University, Utrecht, Netherlands ³Radboud University, Nijmegen, Netherlands (joyce.bosmans@ru.nl) ⁴Royal Netherlands Meteorological Institute (KNMI), Netherlands ⁵University of Southampton, United Kingdom

Moisture tracking

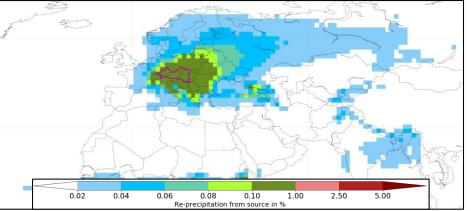
What are the sources of precipitation?

What is the fate of evaporation?

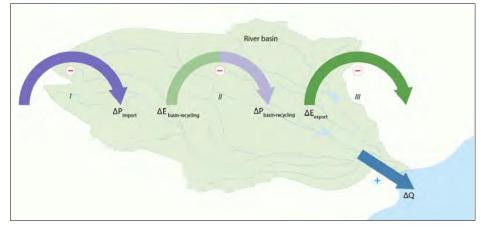


Questions can be answered with 'offline' moisture tracking models, e.g. WAM-2layers (<u>Van der Ent et al., 2014</u>)

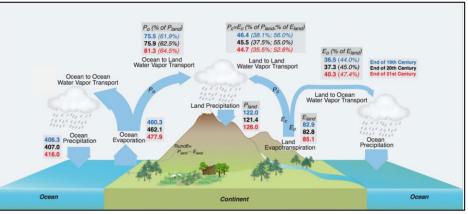
Required input is daily or sub-daily gridded fields of:


- Precipitation
- Evaporation
- Wind speed (at several pressure or model levels)
- Humidity (at several pressure or model levels)

Applications of moisture tracking



Sources of precipitation (Guo et al., 2019)


Fate of land evaporation from specific river basins (Link et al., 2020)

Land-use change impacts (Wang-Erlandsson et al., 2018)

Future water cycle changes (Findell et al., 2019)

First application in a paleoclimate study: Orbital extremes over the Mediterranean Sea

Paleoceanography and Paleoclimatology

RESEARCH ARTICLE 10.1029/2019PA003655

Kev Points:

- Moisture sources for
 precession-induced enhanced
- winter precipitation are local in fall and from the Atlantic in late winter
- For obliquity, precipitation changes are smaller; local and Atlantic sources play an equal role
- The Atlantic sources are not related to storm tracks but to low-latitude surface pressure changes

Precession- and Obliquity-Induced Changes in Moisture Sources for Enhanced Precipitation Over the Mediterranean Sea

J.H.C. Bosmans^{1,2}, R.J. van der Ent^{1,3}, R.J. Haarsma⁴, S.S. Drijfhout^{4,5,6}, and F.J. Hilgen¹

¹Faculty of Geosciences, Utrecht University, Utrecht, Netherlands, ²Faculty of Science, Radboud University, Nijmegen, Netherlands, ³Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands, ⁴Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands, ⁵Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, UK, ⁶Faculty of Science, Utrecht University, Utrecht, Netherlands

CC I

Precession-induced enhanced precipitation over the Mediterranean

- What is the source of freshwater input, thought to cause sapropels?
- Winter precipitation could play an important role
- (Bosmans et al., 2015).
- Is enhanced winter precipitation related to local processes or Atlantic storm tracks?

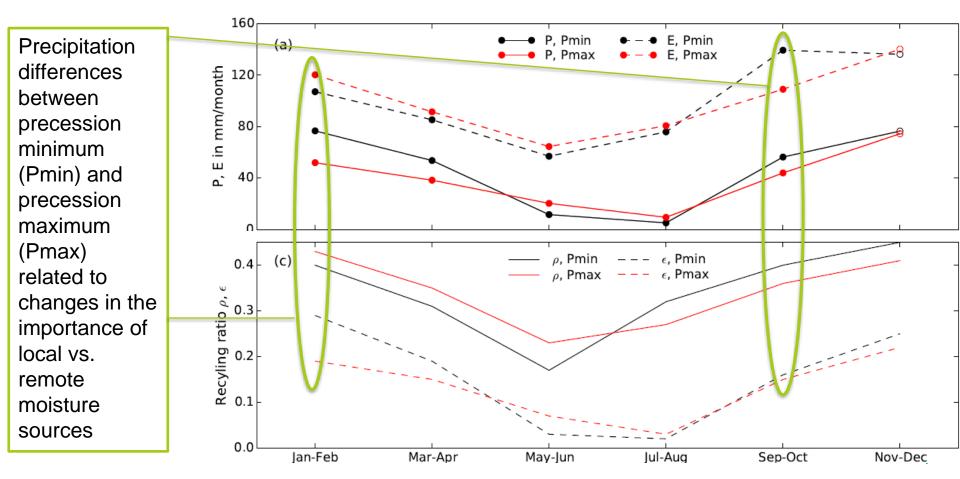
Sapropels in Sicily from the Miocene Tuenter (2004)

Methods

Orbitally extreme experiments performed with the stateof-the-art climate model EC-Earth.

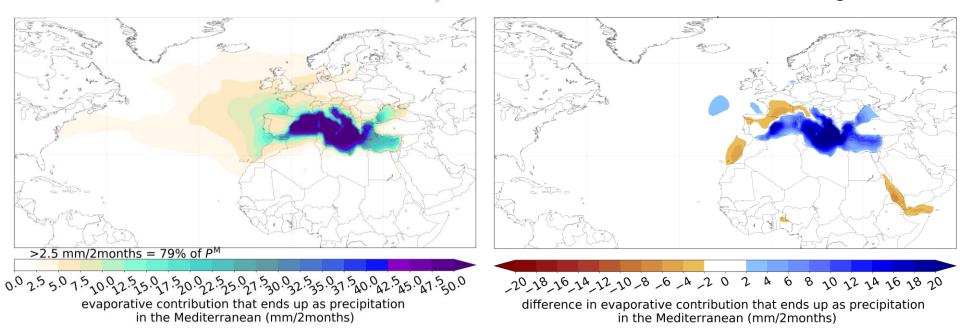
Moisture tracking with WAM-2layers to compute:

 ε = evaporation recycling ratio (fraction of Mediterranean evaporation ending up as Mediteranean precipitation)



Results for precession

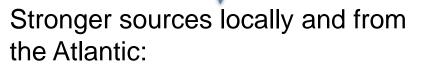
(cc)

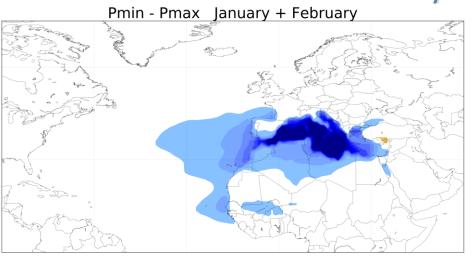

Precession September+October

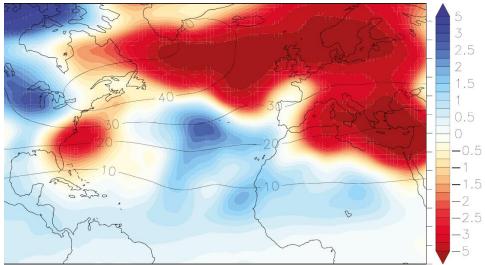
20% more precipitation during precession minimum.

Moisture sources during Pmin:

Differences between Pmin and Pmax

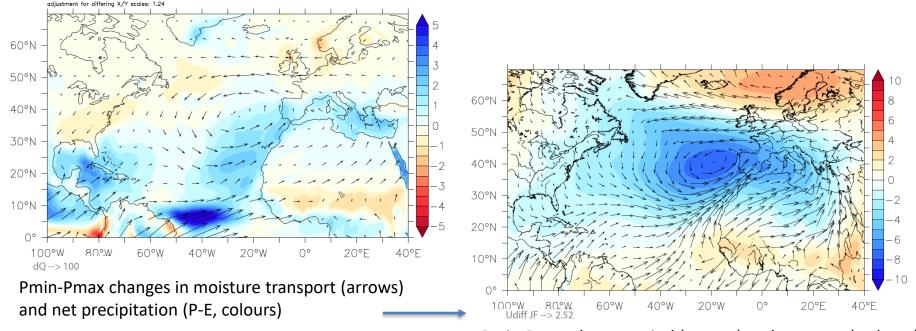

Blue = stronger sources during Pmin Red = weaker sources during Pmin




Precession January + February

50% more precipitation during Pmin.

Red = less storm track activity during Pmin


Standard deviation of 500 hPa geopotential height (m)

Enhanced precipitation NOT driven by storm track activity over North-Atlantic

difference in evaporative contribution that ends up as precipitation in the Mediterranean (mm/2months)

20,18,16,14,12,10,8,6,4,202468,10,12,14,16,18,20

Precession January + February

Pmin-Pmax changes wind (arrows) and pressure (colours)

Enhanced moisture transport from sub-tropical Atlantic related to weaker Azores High

Conclusions

Enhanced precipitation during precession minimum due to different mechanisms.

Stronger **local moisture recycling** in September and October.

Increased sub-tropical **Atlantic moisture transport** due to weaker **Azores High** during January and February.

More information and contact

Bosmans, J. H. C., van der Ent, R. J., Haarsma, R. J., Drijfhout, S. S. and Hilgen, F. J.: Precession- and Obliquity-Induced Changes in Moisture Sources for Enhanced Precipitation Over the Mediterranean Sea, Paleoceanogr. Paleoclimatology, 35(1), 1–14, doi:10.1029/2019PA003655, 2020.

Information on orbital extremes in the Mediterranean: Joyce Bosmans (joyce.bosmans@ru.nl)

Collaborations on moisture tracking for other paleoclimate studies: Ruud van der Ent (<u>r.j.vanderent@tudelft.nl</u>)