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Moisture tracking

What are the sources of precipitation?
What is the fate of evaporation?

Questions can be answered with ‘offline’ moisture tracking
models, e.g. WAM-2layers (Van der Ent et al., 2014)

Required input is daily or sub-daily gridded fields of:
— Precipitation
— Evaporation
— Wind speed (at several pressure or model levels)
— Humidity (at several pressure or model levels)



https://doi.org/10.5194/esd-5-471-2014

Applications of moisture tracking

Sources of precipitation (Guo et al., 2019)

Land-use change impacts (Wang-Erlandsson et al., 2018)
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First application in a paleoclimate study:

Orbital extremes over the Mediterranean Sea
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Precession-induced enhanced precipitation over the
Mediterranean

What is the source of freshwater
input, thought to cause sapropels?

Winter precipitation could play an
important role
(Bosmans et al., 2015).

Is enhanced winter precipitation

related to local processes or 4
Atlantic storm tracks? Sapropels in Sicily from the Miocene Tuenter (2004)
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Methods

Orbitally extreme experiments performed with the state-
of-the-art climate model EC-Earth.

Moisture tracking with WAM-2layers to compute:

P = precipitation recycling ratio (fraction of
precipitation over Mediterranean originating from
Mediteranean evaporation)

* & = evaporation recycling ratio (fraction of
Mediterranean evaporation ending up as
Mediteranean precipitation)



Precipitation
differences
between
precession
minimum
(Pmin) and
precession
maximum
(Pmax)
related to
changes in the
importance of
local vs.
remote
moisture
sources

Results for precession
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Precession September+October

20% more precipitation during Differences between Pmin and Pmax
precession minimum.
Blue = stronger sources during Pmin

Moisture sources during Pmin: Red = weaker sources during Pmin
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Precession January + February

50% more precipitation during Pmin.

l

Stronger sources locally and from
the Atlantic:

Pmin - Pmax January + February
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difference in evaporative contribution that ends up as precipitation
in the Mediterranean (mm/2months)

Red = less storm track activity during

Pmin
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Enhanced precipitation NOT driven by
storm track activity over North-Atlantic
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Enhanced moisture transport from sub-tropical Atlantic
related to weaker Azores High
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Conclusions

Enhanced precipitation during precession minimum
due to different mechanisms.

Stronger local moisture recycling in September
and October.

Increased sub-tropical Atlantic moisture
transport due to weaker Azores High during
January and February.
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More information and contact

Bosmans, J. H. C., van der Ent, R. J., Haarsma, R. J., Drijfhout, S. S. and Hilgen, F. J.:
Precession- and Obliquity-Induced Changes in Moisture Sources for Enhanced
Precipitation Over the Mediterranean Sea, Paleoceanogr. Paleoclimatology, 35(1), 1-14,
doi:10.1029/2019PA003655, 2020.

Information on orbital extremes in the Mediterranean:
Joyce Bosmans (joyce.bosmans@ru.nl)

Collaborations on moisture tracking for other paleoclimate studies:
Ruud van der Ent (r.J.vanderent@tudelft.nl)
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