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Introduction 

As shown in the literature several times, the calculation of the anisotropy of 

magnetic susceptibility (AMS) of hematite single crystals using standard linear 

AMS theory (fitting tensor of 2nd rank) reveals that the calculated minimum 

principal susceptibility is parallel to the crystallographic c-axis, but is negative, 

which has however evidently nothing to do with diamagnetism as found out 

through direct measurement of susceptibility along the principal directions. 

 

The problem of negative minimum principal susceptibility can be split in two 

parts: 

(1) How to represent single crystal AMS in such a case. 

(2) How this phenomenon limits standard models of bulk (multi-crystal) AMS. 

 

We investigate these two points, using susceptibility measured in symmetry 

planes of hematite crystal. We present our contribution in the original form, 

which was aimed as a poster. 



Directional susceptibility 

https://en.wikipedia.org/wiki/Hippopede 

When d > 0 the curve has an oval form and is 

often known as an oval of Booth 

Nagata, T., 1961. Rock magnetism. Maruzen 

Tokyo. 

https://www.mathcurve.com/courbes2d.gb/bo

oth/booth.shtml 

 

Curves studied by Fagnano in 1750, Euler in 

1751, and Booth in 1877. 

James Booth (1810 -1878): British 

mathematician. 

Other names: Hippopede of Proclus, elliptic 

lemniscate (for the ovals) and hyperbolic 

lemniscate (for the lemniscates). 

 

 

Polar equation:  

r2=a2cos2a + eb2sin2a 

e = 1 for the ovals 

e = –1 for the lemniscates 

 

krivka smerove susc. je tedy podobna 

elipticke lemniskate,  ovsem nejsou tam ty 

mocniny u parametru r,a,b 
zejmena by se muselo udelat sqrt 
viz lemni_and_spol 

 kd=d’*k*d 

d ... direction cosines of the applied field 

k ... tensor of magnetic susceptibility  

Tensor of magnetic susceptibility (k) is usually computed from a set of measurements by which 

magnetic field (red arrow in Fig. 1a) is applied in different directions. Response in this direction is 

represented by the directional susceptibility related to the susceptibility tensor as 

 

     kd=d*k*d’  (1) 

Fig. 1a. Directional susceptibility  (kd = OC) creates  

a curve similar to eliptical lemniscate. Adopted from 

Nagata (1961): 

Fig. 1b. Surface (upper part) of directional  

susceptibility. 

where d is vector of direction cosines.  



Directional susceptibility of hematite 

measured in symmetry planes 

Fig. 2. Directional susceptibility measured in three mutually perpendicular planes of hematite  

(we shall investigate the blue one). Very small directional susceptibilities were measured in  

vertical direction, where minimum directional susceptibility is 2.56 x 10-5 (>0).   



Susceptibility tensor was fitted to measured directional susceptibilities. Its first eigenvector e1 is 

slightly deviated (e1=4.5o) from horizontal plane (due to imperfect arrangement of the measurement), 

and the maximum eigenvalue kmax = 0.011. Third eigenvector e3 is almost vertical.  

The minimum eigenvalue that should serve as minimum principal grain susceptibility is negative,  

kmin = - 0.0006. The curve of directional susceptibilities back-computed from the fitted tensor is 

distorted near origin (Fig. 3a,b). 

 
Fig. 3a. Directional susceptibilities measured 

(blue  points) and back-computed (red curve) 

from the fitted tensor of susceptibility 

according to equation 

 
kd=[cosa, sina]*k*[cosa, sina]’ (2) 
  

Fitting susceptibility tensor  

Fig. 3b. Detail. As a consequence of the negative eigenvalue,  

the curve of directional susceptibility overshoots through the origin  

to opposite halfspace.  



kd= kmin+(kmax-kmin)*(cos(a-d))2 (3) 

Fig. 4. Directional susceptibilities measured 

(blue  points) and back-computed (red 

curve) from the tensor of susceptibility. 

Due to negative eigenvalue of the 

susceptibility tensor, the back-computed 

directional susceptibilities are negative  

for the angle a near 90o (vertical direction). 

Directional susceptibilities back-computed from the fitted tensor of susceptibility and 

represented by lemniscate in Fig. 3 can be also expressed as a function of the angle (a) betwen 

given direction and  horizontal plane 

where d = e1 (inclination of the first eigenvector). 

Directional susceptibility corresponding to  

the fitted tensor 



Non-tensorial expressions 

Several expressions of hematite grain susceptibility are compared in Fig. 5. 

 

The red curve in Fig. 5 corersponding to fitted tensor (the same as in Fig. 4) reveals 

insufficiency of tensor-description  near minima and maxima of directional susceptibilities.  

 

The green curve shows a naive experiment replacing kmin and kmax in the grain susceptibility 

tensor by minimum and maximum measured directional susceptibilities. This fits minimum and 

maximum exactly, but produces stronger residuals in between. 

  

The blue curve represents a family of better fits that can be reached by power series involving  

even grades of cosine (or equivalently of sine)  

  

 kd=a+b*( cos(a-d))2+ c*(cos(a-d))4+...   (4) 
  

First two terms correspond to previously examined tensorial representation. Involving more 

terms leads to non-tensorial expressions. They are all represented by the blue curve in Fig. 5 

(they optically coincide).  

Adding the 4th power term improves the fit substantially. Nevertheless, minimum susceptibility 

is still negative (a = -1.26e-4). With increasing power, the magnitude of minimum susceptibility 

decreases and it becomes positive by 8th power (a = 1.56e-6). This expression could be taken a 

proper model of hematite grain investigated.   

 

 
Note that fitting also the angle d provides results close to the first eigenvector of the tensor of 

susceptibility. 



Fig. 5. Different expressions 

of hematite susceptibility  

compared. 

Fitting power series is justified by theory. But this more complex description of hematie grain 

cannot be expressed by a tensor of second rank and serve as an input in the already ellaborated 

models of bulk anisotropy.  

How the (small) negative eigenvalues resulting from standard hematite crystal processing will 

influence the modelled bulk anisotropy? 

Is there a simple correction of the grain susceptibility tensor convenient for fabric modelling? 



Fabric modelling 

We consider a measured sample containing oriented hematite grains. Bulk directional 

susceptibility in any direction is a sum of grain directional susceptibilities in that direction 
 

   kbd(a)=Skd,i(a)   (5)  
 

By measuring the sample, we obtain kbd(a) in a number of directions a and then, by standard 

procedure, we fit the tensor of bulk magnetic susceptibility kb. 

 

Fabric modelling is usually based on a sum of rotated grain tensors. For oblate uniaxial grains 

with principal susceptibilities K1 = K2 > K3, tensor of modelled bulk susceptibility can be computed  
 

    kbM = K2I - (K1-K3)E   (6)  
 

where E is orientation tensor of grain axes (poles to basal planes) and I is identity matrix (Ježek 

and Hrouda, 2002).  

 

We can compare the fitted (kb ) and modelled (kbM ) bulk tensors or compare directional 

susceptibilities computed from these tensors (using eq. (1)) and the „true“ bulk directional 

susceptibilities kbd(a). The latter is presented in Fig. 6. 

 

Fig. xxx. Scheme of fabric modeling 

as a sum of directional susceptibilities 

of oriented grains 

Black, green and red lines are symmetry axes of 3 hematite grains 

(poles and basal planes). Each grain poses the same set of directional 

suscpetibilities (blue dots; those measured in Fig. 2).  

Bulk directional susceptibility in any direction is a sum of directional 

susceptibilities  

(taken from the blue curves) of mutually rotated grains  

kbM = K2I - (K1-K3)E = K1(I – E) + K3E 
 
kbM1 =  K1(1 – E1) + K3 E1  

 

kbM3 =  K1(1 – E3) + K3 E3  

 

PbM =  [Pg(1 – E1) + E1 ]/[Pg(1 – E3) + E3] 
 



Fig. 6. Comparison of true and modelled bulk directional susceptibilities of a sample 

containing preferentially oriented hematite grains that have small negative minimum 

principal susceptibility. Scaling is arbitrary. 

Comparison of true and modeled directional 

susceptibilities 



In Fig. 6, black dots on unit circle show preferred orientation of basal planes of hematite grains 

caused by vertical compression.  

Each grain poses the same set of directional susceptibilities (as in Fig. 2). This is indicated by 

blue dots showing directional susceptibilities of a grain whose basal plane is oriented  sub-

horizontally. (Directional susceptibilities of other grains are rotated accordingly to grain 

orientation.) 

Bulk directional susceptibility kbd is plotted by blue curve. Due to preferred orientation, the curve  

is squeezed in vertical direction but not as much as grain directional susceptibility (blue dots).  

Directional susceptibilities back-computed from the tensor of bulk susceptibility kb create the 

green curve. This curve is close to the blue one, only in vertical direction, it tends more towards 

origin. 

Coloured dots are directional susceptibilities computed from modelled bulk susceptibility kbM . 

This is done for several  options of grain susceptibility tensor, differing by the choice of minimum 

principal susceptibility: 

red …    K1 = 0.011 and K3 = - 0.0006 (as obtained by tensor fit of the original data, Fig. 3)  

magenta … K1 = 0.011 and K3 = 0  (negative value replaced by zero) 

cyan …  K1 = 0.011 and  K3 = min(grain kd)  (minimum measured directional susceptibility ) 

Zkousel jsem i jiné varianty, ale tyto asi postaci. 



Results of the comparison and discussion 

Red dots in Fig. 6 coincide with the green curve which means that fabric modelling based  

on the grain susceptibility tensor containing small negative minimum principal susceptibility 

(i.e., when we simply keep this value in the grain tensor) leads to result equivalent to fitting tensor 

in true directional susceptibilities of the sample (i.e., what we obtain by standard measurement). 

 

Nevertheless, keeping the negative minimum grain susceptibility is unpleasant (creating a false 

feeling of diamagnetic behaviour of hematite in this direction). From this point of view, a 

replacement of the negative value by zero or by minimum grain directional susceptibility would be 

suitable. Fig. 6 shows such approach provides less accurate fit that keeps principal directions but  

decreases degree of fabric (P). By the intensity of preferred orientation shown in Fig. 6, P changes 

from approximately 5 to 4. 

 

Important is that in fabric modelling, neither using the small negative grain susceptibility nor its 

replacement by zero or small positive value influences orientation of eigenvectors (lineation, 

foliation). 



Comment: Fig. 6 indicates large value of modelled bulk fabric degree of anisotropy (PbM ~ 

4 to 6) which corresponds to very large grain degree Pg. We can analyse it by means of  

eq. (6). We find 

PbM =  [Pg(1 – Emin) + Emin ]/[Pg(1 – Emax) + Emax]  (7) 

PbM =  (1 – Emin)/(1 – Emax)  (8) 

where Emax  and Emin are eigenvalues of  

the orientation tensor of hematite poles.  

This relation is plotted in Fig. 7. 

 

 

 

 

 

Fig.7 Equation (7)  for different intensity  

of hematite poles preferred orientation. 
 

This ratio is plotted in Fig. 7 by red broken line. For large Pg, the degree of bulk fabric is almost 

independent of Pg. It was observed already by Hrouda 1981 (Fig. 8). 

When grain minimum susceptibility is very small (or equal to zero), the grain degree is 

large (or infinite) and the formula simplifies to 



Bulk degree of AMS,          Grain degree of AMS,        Concentration Parameter 

 Effects of Grain AMS and Preferred Orientation: a model 

(Hrouda, 1981, JSG) 

If Pc>100, knowledge of its precise value plays no role in modelling. 

Fig. 8 



Fig. 9. Isolinies of directional susceptibility  

and its surface (lower part) reconstructed from  

all three measured planes. Red square and line (with 

arrows) show first eigenvector of susceptibility, black 

square and line indicates maxima of the surface of 

directional susceptibility  

Reconstruction of 3D directional susceptibility 

Using data from all three planes, the surface of directional susceptibility was reconstructed.  

The result indicates that using full 3D data (that are currently measured by the authors of the 

contribution) should lead to analogous mathematical description as the one used above. 



(Hrouda et al.,1985, J. Geophys.) 

Reflected-light Microscopy 

X-ray Pole Figure Goniometry 

AMS 

HEMATITE ORE, Minas Gerais, Brazil 



Theoretical and Measured AMS 

  measured 
calculated from X-ray 

1. Measured principal susceptibilities are oriented in the 

same way  as calculated theoretically from the c-axis pattern. 

2. Measured degree of AMS and shape parameter are slightly 

lower than those calculated theoretically from c-axis pattern. 

3. The above differences may result from the fact that the 

AMS and X-ray measurements were not executed on exactly 

the same specimens and the respective specimen volumes 

differed substantially (1 cm3 vs. thin section). 



Conclusion 

Negative minimum susceptibility of hematite single crystal measured and 

calculated using standard AMS technique is an artifact.  

It: 

- does not invalidate standard models of magnetic fabric 

- does not influence orientation of eigenvectors (lineation, foliation) 

- can be replaced by zero or a small value > 0 in fabric modelling  

- its replacement decreases, proportionally to intensity of preferred orientation, 

the parameter P  

- in weak preferred orientation of grains this effect is not important  

 


