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Equatorial Deep Jets (EDJ)  

- (figure on the right shows observed EDJ in the 
Atlantic Ocean) 

- strong zonal currents on the equator, between 
500 m and 2000 m depth 

- alternating in direction with depth 

- downward phase propagation, upward energy 
propagation 

- frequency dependent on width of ocean basin, 
EDJ period in the Atlantic: ~4.5 years (as visible 
in Panel b on the right, they sit on the gravest 
basin mode resonance curve shown in solid grey) 

- EDJ are dominant interannual variability in 
Atlantic  

Why are the EDJ important? 

- they influence atmospheric and oceanic variables 
at the ocean surface (Brandt et al., 2011) 

- they influence deep oceanic oxygen and tracer 
distribution (Brandt et al., 2012; 2015) 

- nevertheless, they are not present in most ocean 
models today

(Greatbatch et al., 2018)
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How are the EDJ generated? 

- originate from number of mechanisms, involving: 

‣ instabilities in western boundary currents and upper ocean currents 

‣ resonant triad interaction of intraseasonal waves 

‣ basin mode resonance 

(Greatbatch et al., 2018)

How are they maintained against dissipation? 

- EDJ must have maintenance mechanism in their depth 
range, or they could not propagate vertically as far as 
they do (Claus et al., 2016) 

- Greatbatch et al. (2018) suggested that this 
mechanism could be the convergence of the 
meridional flux of intraseasonal zonal momentum 
(IMFC), originating from the deformation of 
intraseasonal waves by the EDJ, and fluxing 
momentum into the EDJ (see figure on the right)

Intraseasonal Momentum 
Flux Convergence (IMFC): 

Prime: time scales < 70 days 
Overbar: time scales > 70 days
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Aim of this study (Bastin et al., 2020, in press): 

- What happens if we introduce IMFC associated with EDJ into an ocean model as the only forcing term?  

‣ Can we reproduce EDJ with realistic amplitude?  

‣ Is there nonlinear generation of time mean flow when the EDJ are the only variability present?
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Model setup: 

- NEMO version 3.6 (Madec et al., 2017) 

- rectangular ocean basin with flat bottom, 5000 m 
deep 

- 55° wide (chosen to mimick equatorial Atlantic) 

- 1/4° horizontal resolution, 200 vertical levels 

- initialised with basin-averaged vertical profiles of 
temperature and salinity from World Ocean Atlas 
2018 (Locarnini et al., 2019; Zweng et al., 2019)

Sim-IMFC 

Forcing Circulation develop-
ing in the model

4.5-year component of
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Two model runs (see figure below): 
Sim-WIND 

- forced with steady, zonally averaged winds 
from NCEP/NCAR reanalysis (Kalnay et al., 
1996; Kistler et al., 2001) 

Sim-IMFC 

- forced at every point in the basin with the 
4.5-year component of IMFC diagnosed from 
Sim-WIND

(Bastin et al., 2020)
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EDJ in Sim-WIND:  

- some differences to observed 
EDJ, but reasonably realistic 

- period of simulated EDJ very 
close to observations (~4.5 years) 

EDJ in Sim-IMFC: 

- characteristics compare well 
with EDJ from Sim-WIND 

- main differences: lack of near-
surface circulation and lack of 
variability on other frequencies 
(both due to experiment design) 

- in particular, EDJ amplitude in 
Sim-IMFC is similar to Sim-
WIND 

➡strongly corroborates theory by 
Greatbatch et al. (2018): IMFC 
likely is the key process 
maintaining the EDJ at depth
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Mean zonal circulation at 1000 m depth: 
Sim-IMFC:  

- although there is forcing only at the EDJ period, 
there is nonlinear generation of variability on 
other frequencies 

- in particular, time mean flow is generated in EDJ 
depth range 

- transfer of energy from EDJ to mean flow 
happens through zonal self-advection of EDJ (not 
shown here, see Bastin et al., 2020) 

- generated near-equatorial mean circulation is 
westward on equator with flanking eastward 
currents, but changes sign around 25°W, 
becoming eastward on equator and westward to 
north and south 

- this mid-basin change of sign is also visible in 
Argo data  

➡Atlantic EDJ play a role in determining the mean 
current direction along equator at intermediate 
depths: important e.g. for ventilation of deep 
eastern oxygen minimum zones
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