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\ The Makran Accretionary Prism has been subdivided in four fault-bounded tectono-stratigraphic do-
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Figure 2| Tectonic scheme of the western Makran (from Barbero et al., 2020)
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plex. Normalizing values are from Sun and McDonough (1989).

Chondrite-normalized REE patterns for magmatic rocks from the western Durkan Com-

N-MORB normalized Th vs. Nb discri-
mination diagram of Saccani (2015)

Zr vs. Th/Ta diagram for the magmatic
rocks of the western Durkan Complex

mains, that are, from North to South: i) North Makran ii) Inner Makran iii) Outer Makran and iv) Coastal
Makran (Figs.1, 2). The Inner, Outer and Coastal Makran are characterized mainly by Eocene to Plioce-
ne deep to shallow water sedimentary succession (Burg, 2018), whereas the North Makran consists of
an imbricated stack of south-verging metamorphic and non-metamorphic continental and oceanic units
(e.g., McCall & Kidd, 1982; Burg, 2018). The North Makran domain record the pre-Eocene geodynamic
history of the Makran Accretionary Prism (McCall & Kidd, 1982;Burg, 2018; Saccani et al., 2018; Barbe-

The Durkan Complex is one of the major tectonic elements of the North Makran and consists of several
tectonic slices, which include deformed Early Cretaceous-Paleocene carbonatic and volcanic succes-
sions, as well as rare Carboniferous, Permian and Jurassic slices of platform limestones (Hunziker et
al., 2015). The Durkan Complex is commonly interpreted as representing the disrupted sedimentary
cover of the passive margin of a micro-continent known in literature as the Bajgan-Durkan Complex.
However, its stratigraphic succession, as well as the age and geochemistry of the volcanic rocks are still
- poorly known. Nevertheless, such data are fundamental for constraining its meaning for the pre-Eocene
geodynamic evolution of the Makran Accretionary Prism.

- We present new geological, stratigraphic, biostratigraphic data on the sedimentary and meta-sedimen-
tary successions as well as new geochemical data on the associated volcanic and meta-volcanic rocks
cropping out in the western sector of the Durkan Complex (i.e., in the Manujan area, Figs. 2, 3). These
data are fundamental to define the tectono-stratigraphic architecture of the western Durkan Complex

and they can provide robust constraint for understanding the significance of the Durkan Complex for the
geodynamic evolution of the Makran Accretionary Prism

Biostratigraphic analysis were aimed to date the sedimentary rocks associated with the volcanic rocks, in order to provi-
de age constraints for the magmatic activity. The biostratigraphy is based on the integration of foraminifera, radiolarians
and calcareous nannofossils. The results are shown in Figure 9.

Zandan Chah Shahi 1

transect and 2 transects
()] ()]
C C
N N
N = ) =
O 3 O 3
E® E®

o S0 S0

c > 2 2

S 5 o ©

¢ 5 5

£

-

D * | ¥

=

7 /

(7))

(qV)

=>

Vulcano-Sedimentary
Sequence

* Foraminifera data

Radiolarian, foraminifera and
calcareous nannofossils data

Manujan
transect

Figure 9

Summary of the
results of the
biostratigraphic
analyses

In summary, our data indicate that the western Durkan Complex successions have recorded complex Late Cretaceous
interplay of sedimentation and alkaline magmatism, which is significantly younger than the Middle Jurassic - Early Creta-
ceous rifting stages recognized in literature in the eastern Durkan Complex.
The distinct successions of the Durkan Complex show tectono-stratigraphic features that can be reconciled to the cap
(Figs. 4b, 4e4), the slope (Figs. 4d1, 4d2, 5e2, 5e5), and the foothill (Figs. 4c3, 4d3) of a typical seamount environ-
ment. Finally, our new findings and regional-scale comparisons suggest that the Late Cretaceous alkaline magmatic
pulse recorded in the Durkan Complex was likely related to mantle plume activity in the Makran sector of the Neotethys.
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