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Introduction

Abstract.
We propose a diagram for verification of 2D vector fields (currents,
vertically integrated moisture transport . . . ):

• It visually presents the bias and the variance fractions of every vector
field

• It conveys visual information on the relative rotation of vector fields
• It is based on the PCA-based decomposition of the 2D vector data:

• Full rank for realistic vector fields, 2x2 covariance matrix
• Exact value of RMSE assessed
• Additional error statistics in our R implementation
• Publicly available in CRAN as package SailoR

• It can also be used for spatial fields and ensemble forecast systems
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The success of the Taylor diagram

• The paper describing the Taylor diagram has been cited over 2700
times since 2001.

• The success can be explained because the diagram:
• is an efficient (fast, visual) tool to evaluate models
• incorporates different (RMSE, variance, correlation coefficient) quality

indicators
• is flexible and can be applied to:

• Spatial patterns
• Time series
• Ensembles
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Taylor diagram and 2D vector data (wind, current. . . )

Different results for zonal/meridional components.

Best

Worst

OBS OBS

Figure 1: Zonal/Meridional switch

Figure 6 from Jiménez et al. (2020)
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Use of magnitude is an alternative option

Figure 2: Magnitude of wind

Figure 4 from Ulazia et al., 2016, but directional information is lost.
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Mean of zonal and meridional Taylor diagrams

Figure 3: Mean of Taylor diagrams for zonal and meridional components of
wind-stress

Figure 9 from Lee et al., 2013. Again, directional information is lost.
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Proposed solution: The Sailor Diagram

Playing Carroll:

Taylor -> Sailor. Sailors need to measure currents, winds. . . 2D vectors.

Basis for a proposal

• There is no uniquely accepted version of a 2D correlation coefficient.
• We want to keep a diagnosis of the quality of directionality.
• We, therefore, forget the graphical setup of the Taylor diagram, but

keep the idea of a fast visual diagnostic.
• Results, however, will be exact. 2D MSE error between observations

U (N × 2 matrix) and model simulation V (N × 2 matrix):

∆2
uv = 1

N (V − U)T (V − U) (1)
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Step by step explanation

Playing with synthetic data

We consider as observations a one-year long (2017) dataset (Ref) of hourly
wind (zonal and meridional components) from ERA5 reanalysis at the
point 38◦N and -124◦W, near Los Angeles. The principal axes (no lost
variance in 2D) of the data are shown.
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Figure 4: Scatterplot of zonal (X) and meridional components of wind in Ref
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Playing with synthetic data (Cont.)

• Observational dataset Ref
• Synthetic MOD1 added constant bias.
• Synthetic dataset MOD2: 30◦ counterclockwise rotation.

Scatterplots and principal components (ellipses) are shown below.
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Figure 5: Scatterplots for MOD1 and MOD2 aginst Ref
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Playing with synthetic data (Cont.)

• Observational dataset Ref
• Synthetic MOD3 random resampling on top of Ref.
• Synthetic dataset MOD4: multiplied by two.

Scatterplots and principal components are shown below.
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Figure 6: MOD3 and MOD4 against Ref
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Playing with synthetic data (Cont.)

Dataset Bias Rotation R2 Var. Fraction

MOD1 6= 0 0 2 1
MOD2 6= 0 30◦ 2 1
MOD3 0 0 ≈ 0 1
MOD4 6= 0 0 2 4

For the squared of the correlation coefficient R2, the definition by (Crosby
et al., 1993) (perfect 2D correlation if R2 = 2) is used.

Crosby, et al., 1993. A proposed definition for vector correlation in
Geophysics: Theory and Application, Journal of Atmos. and Oceanic
Technol., 10, 355–367.
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Mathematical main steps

MSE obtained from ∆2
uv through its Frobenius norm

ε2 = ||∆2
uv ||F . (2)

Tool: projection onto EOFs. Full rank covariance!

Su = 1
N
(
U − Ū

)T (U − Ū
)

=
(

Sxx Sxy

Sxy Syy

)
(3)

For 2D geophysical flows: rank(S) = 2. No variance lost using 2 EOFs.

U = Ū + P∗
u ΣuET

u = Ū + PuET
u (4)

Model V projected onto U’s EOFs (Full rank ⇒ Neofs = 2)
V projected onto U observational EOFs using rotation matrix Rvu:

V = V̄ + Pv ET
u RT

vu (5)
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The ellipses defined by the principal components
The expression of the data in terms of principal components leads to this
quadratic form (ellipses).

||P∗
u P∗T

u ||F = ||
(
U − Ū

)
EuΣ−2

u ET
u
(
U − Ū

)T ||F = 1. (6)

The eccentricity of every ellipse is related to the variance of the
corresponding semi-major and semi-minor axes (fraction of variance
corresponding to each PC):

εu =

√
1− σ2

2u
σ2

1u
(7)
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Error matrix:
∆2

uv = 1
N B2

uv + 1
N Duv (8)

Bias:

B2
uv =

(
V̄ − Ū

)T (V̄ − Ū
)

(9)

The errors due to directionality are expressed using EOFs from U (Eu), the
rotation matrix Rvu, the standard deviations of PCs (Σu for observations
and Σv for model) and the covariances of PCs corresponding to model and
observations Γvu:

Duv = EuΣ2
uET

u + RvuEuΣ2
v ET

u RT
vu−

(
EuΓvuET

u RT
vu + RvuEuΓT

vuET
u
)

(10)

The Sailor diagram graphically represents the bias V̄ − Ū, the EOFs Eu

and Ev , their eigenvalues λui and λvi (i = 1, 2) and the rotation Rvu.
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Resulting Sailor diagram for synthetic data
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Figure 7: Diagram showing the means and ellipses (exact RMSE in the legend).
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Sample of additional diagnostics provided in our package

• R2 computed from CCA (Crossby et al., 1993)
• ε (eccentricity of the ellipses)
• Congruence coefficients of EOFs (degeneracy of eigenvalues)

gii = |eui · evi | (11)

• Relative rotation of axes (from Rvu)
• Variances of zonal/meridional axes
• Variances of principal axes

Let’s see them at work with the synthetic datasets.
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Identifying the (known) errors in our synthetic datasets

Figure 8: Table of (some) diagnostics for synthetic models

• Bias in MOD1 4

• Rotation in MOD2 4

• Lack of correlation and no rotation in MOD3 4

• Change in variances (σ2
v = σ2

u × 22) in MOD4 4
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Results with real data and further degrees of freedom

1. Scale factor to improve readability. Same plot, different scale.
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Figure 9: Application to wind data in a buoy (Dragonera)

Improves the visibility of the bias, distance from each model’s average to
the observational grey square 18



1. Scale factor. 2. Ellipses centered on top of observational mean.
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Figure 10: Vertically integrated moisture transports.

Ellipses share same center. Improves the perception of rotation and axes. 19



Application to time-averages over a Hemisphere.
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Figure 11: Multi-year January average of surface wind over NH

PCA is in this case applied in S-mode Ô(Richman, 1986)
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Application to ensembles of models.

• Case 1. All realizations of a model joined together.
• Case 2. Every realization taken as an independent run.
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Figure 12: Southern Hemisphere from ERA5 and CMIP5 models
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What about degeneracy of eigenvectors?

if ε ≈ 0, the rotation angle can not be trusted but RMSE is still exact,
since it does not depend on the degeneracy.
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Conclusions

• A diagram is presented which allows a fast visual comparison of
simulations of 2D vector fields with observations.

• The diagram is constructed by expanding the squared error in a bias
and a directional component.

• The directional component is assessed by means of the EOFs of the
2D distribution of wind/current.

• It can be applied to wind, current, vertically integrated moisture
transport and any other 2D vector quantity.

• The diagram can be complemented with additional diagnostics such
as the eccentricity of the ellipses, the congruence coefficients or the
canonical correlations, parameters provided by our package.

• The diagram allows to identify errors in the bias, the orientation of
the main directions of the vector datasets or their relative variances.

• The mathematical development is exact and the use of the RMSE
error in the diagrams allows an exact comparison of the overall error.
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R package publicly available

Figure 14: SailoR R package

Available from CRAN
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Paper under discussion in Geoscientific Model Development

DOI: https://doi.org/10.5194/gmd-2019-289

Full documentation of the methodology in this paper (under review now).

25

https://doi.org/10.5194/gmd-2019-289

