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Introduction

Abstract.
We propose a diagram for verification of 2D vector fields (currents,

vertically integrated moisture transport ... ):

= |t visually presents the bias and the variance fractions of every vector
field

= |t conveys visual information on the relative rotation of vector fields

= |t is based on the PCA-based decomposition of the 2D vector data:

= Full rank for realistic vector fields, 2x2 covariance matrix
= Exact value of RMSE assessed

= Additional error statistics in our R implementation

= Publicly available in CRAN as package SailoR

= It can also be used for spatial fields and ensemble forecast systems


https://cran.r-project.org/package=SailoR

The success of the Taylor diagram

= The paper describing the Taylor diagram has been cited over 2700
times since 2001.

= The success can be explained because the diagram:

= is an efficient (fast, visual) tool to evaluate models

= incorporates different (RMSE, variance, correlation coefficient) quality
indicators

= s flexible and can be applied to:

= Spatial patterns
= Time series
= Ensembles



Taylor diagram and 2D vector data (wind, current...)

Different results for zonal /meridional components.

Zonal wind component Meridional wind component
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Figure 1: Zonal/Meridional switch

Figure 6 from Jiménez et al. (2020)


https://journals.ametsoc.org/doi/10.1175/2009JAMC2175.1

Use of magnitude is an alternative option

‘Standard doviation

‘Standard deviation

Standard doviation

Figure 2: Magnitude of wind

Figure 4 from Ulazia et al., 2016, but directional information is lost.


https://doi.org/10.1016/j.apenergy.2016.08.033

Mean of zonal and meridional Taylor diagrams
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Figure 3: Mean of Taylor diagrams for

wind-stress

Figure 9 from Lee et al., 2013. Again, directional information is lost.

zonal and meridional components of


https://doi.org/10.1175/JCLI-D-12-00591.1

Proposed solution: The Sailor Diagram

Playing Carroll:

Taylor -> Sailor. Sailors need to measure currents, winds. .. 2D vectors.
Basis for a proposal

= There is no uniquely accepted version of a 2D correlation coefficient.
= We want to keep a diagnosis of the quality of directionality.

= We, therefore, forget the graphical setup of the Taylor diagram, but
keep the idea of a fast visual diagnostic.

= Results, however, will be exact. 2D MSE error between observations
U (N x 2 matrix) and model simulation V' (N x 2 matrix):

2 _ 1 T
a2, = (V-0 (v-U) &)



Step by step explanation

Playing with synthetic data

We consider as observations a one-year long (2017) dataset (Ref) of hourly
wind (zonal and meridional components) from ERA5 reanalysis at the
point 38°N and -124°W, near Los Angeles. The principal axes (no lost
variance in 2D) of the data are shown.

a) Reference (OBS) b) Reference (OBS)

Uy (mis)
Uy (mis)

e e
=

Figure 4: Scatterplot of zonal (X) and meridional components of wind in Ref



Playing with synthetic data (Cont.)

= Observational dataset Ref
= Synthetic MODI added constant bias.
= Synthetic dataset M/OD2: 30° counterclockwise rotation.

Scatterplots and principal components (ellipses) are shown below.

a) Reference and MOD1 b) Reference and MOD2

UyVy (mis)
UyVy (mis)

Ux Vi (mfs) UxVx (ms)

(e _® ]
Figure 5: Scatterplots for MOD1 and MOD?2 aginst Ref O



Playing with synthetic data (Cont.)

= Observational dataset Ref
= Synthetic MOD3 random resampling on top of Ref.
= Synthetic dataset MOD4: multiplied by two.

Scatterplots and principal components are shown below.

a) Reference and MOD3 b) Reference and MOD4

UyVy (mis)
UyVy (mis)
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Figure 6: MOD3 and MOD4 against Ref ORY
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Playing with synthetic data (Cont.)

Dataset Bias Rotation R?  Var. Fraction

MOD1  #0 0 2 1
MOD2 #0  30° 2 1
MOD3 0 0 ~0 1
MOD4  #£0 0 2 4

For the squared of the correlation coefficient R?, the definition by (Crosby
et al., 1993) (perfect 2D correlation if R? = 2) is used.

Crosby, et al., 1993. A proposed definition for vector correlation in
Geophysics: Theory and Application, Journal of Atmos. and Oceanic
Technol., 10, 355-367.
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https://doi.org/10.1175/1520-0426(1993)010%3C0355:APDFVC%3E2.0.CO;2
https://doi.org/10.1175/1520-0426(1993)010%3C0355:APDFVC%3E2.0.CO;2
https://doi.org/10.1175/1520-0426(1993)010%3C0355:APDFVC%3E2.0.CO;2

Mathematical main steps

MSE obtained from A2 through its Frobenius norm

e? = ||alllF- (2)
Tool: projection onto EOFs. Full rank covariance!
1 — T ~ S S
Su==(U=-U Uu-u) = oY 3
voeow-o-(TP) e

For 2D geophysical flows: rank(S) = 2. No variance lost using 2 EOFs.

U=U+PX,El =U+PE] (4)

Model V projected onto U’'s EOFs (Full rank = N = 2)

V projected onto U observational EOFs using rotation matrix R,,:

Y T T
V=V+PEIR] (

12



The ellipses defined by the principal components

The expression of the data in terms of principal components leads to this
quadratic form (ellipses).

PP Ile =l (U= D) ES2ET (U-D0) T le =1 (6)

The eccentricity of every ellipse is related to the variance of the
corresponding semi-major and semi-minor axes (fraction of variance
corresponding to each PC):

13



Error matrix:

2 _l 2 1
A, = 5 Bav + 3 Duv (8)
Bias:
B, =(V-0) (V-0 (9)

The errors due to directionality are expressed using EOFs from U (E,), the
rotation matrix R,,, the standard deviations of PCs (X, for observations
and ¥, for model) and the covariances of PCs corresponding to model and

observations I,

Dy, = E,X2E] + RWEXZE] R}, — (ESTwE] R}, + RWETE]) (10)

The Sailor diagram graphically represents the bias V — U, the EOFs E,
and E,, their eigenvalues \,; and \,; (i = 1,2) and the rotation R,,.

14



Resulting Sailor diagram for synthetic data

Reference and synthetic models
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- Scaled with 1 REF
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Figure 7: Diagram showing the means and ellipses (exact RMSE in the Iegend
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Sample of additional diagnostics provided in our package

» R? computed from CCA (Crossby et al., 1993)
= ¢ (eccentricity of the ellipses)
= Congruence coefficients of EOFs (degeneracy of eigenvalues)
i = |eui - ey (11)

= Relative rotation of axes (from R,,)
= Variances of zonal/meridional axes
= Variances of principal axes

Let's see them at work with the synthetic datasets.

16



Identifying the (known) errors in our synthetic datasets

2

R2

Model o S0t b 0y Ouu [bias| RMSE e gu
Ref 4756 4756 1.93 200  0.00 0.00 092 1.00
MODI 4756  47.56 193 0.00 2.00 Im 556 092 1.00
MOD2  47.56  47.56 246 | 052|200 288 8.69 092 | 0.87
MOD3 | 47.56  47.56 -121 [ 072 000 0.00 152 092 | 1.00
MOD4 | 190.24 190.24 193 000 200 556 1176 092 1.00
Figure 8: Table of (some) diagnostics for synthetic models

= Bias in MOD1 v/

= Rotation in MOD2 ¢

. and no rotation in MOD3 v/

= Change in variances (02 = 02 x 22) in MOD4 v/

17



Results with real data and further degrees of freedom

1. Scale factor to improve readability. Same plot, different scale.

a) Dragonera U10/V10 b) Dragonera U10/V10 (scaled)
2 4 Scaled with 1 ~—— Reference 2 - Scaled with 0.025 —— Reference
—— WRF_D WRF_D
— WRF_N — WRF_N
ERAI ERAI
CCMP_SAT CCMP_SAT
w |
[ ]
E o E g
= s S
B B
- o
? B
RMSE RMSE
—— WRF_D:58ms —— WRF_D:58m's
—— WRF_N:56mis —— WRF_N:56ms
. ERAI: 5.6 m/s. - ERAL 5.
24 COMP_SAT: 6.1 mis 2 CCMP_SAT: 6.1 mis
T T T T T T T T T T
10 -5 0 5 10 -1.0 -05 0.0 05 1.0
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Figure 9: Application to wind data in a buoy (Dragonera)

Improves the visibility of the bias, distance from each model’s average tO

the observational grey square 18



1. Scale factor. 2. Ellipses centered on top of observational mean.

Water vapour transport
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Figure 10: Vertically integrated moisture transports.

Ellipses share same center. Improves the perception of rotation and axes. 19



Application to time-averages over a Hemisphere.

a) Reanalyses b) Reanalyses
2 - Scaled with 0.15 — ERAS 2 - scaled with 0.15 — ERAS
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Figure 11: Multi-year January average of surface wind over NH

PCA is in this case applied in S-mode =>(Richman, 1986) omo)
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Application to ensembles of models.

= Case 1.
= Case 2.

a) CMIP5 samples vs ERAS
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All realizations of a model joined together.
Every realization taken as an independent run.

CMIP5 samples vs ERAS
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Figure 12: Southern Hemisphere from ERA5 and CMIP5 models
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What about degeneracy of eigenvectors?

if € & 0, the rotation angle can not be trusted but RMSE is still exact,
since it does not depend on the degeneracy.

Dragonera U10/V10

10

= Reference

— WRF_D

— WRF_N
ERAI
CCMP_SAT

V (m/s)
0
1

RMSE
® WRF_D:58m/s
® WRF_N:5.6 m/s
ERAI: 5.6 m/s
— CCMP_SAT: 6.1 m/s
T T T T T
-10 -5 0 5 10

U (m/s)

-10

Figure 13: Both semiaxes are similar but RMSE is exact 22



Conclusions

= A diagram is presented which allows a fast visual comparison of
simulations of 2D vector fields with observations.

= The diagram is constructed by expanding the squared error in a bias
and a directional component.

= The directional component is assessed by means of the EOFs of the
2D distribution of wind/current.

= It can be applied to wind, current, vertically integrated moisture
transport and any other 2D vector quantity.

= The diagram can be complemented with additional diagnostics such
as the eccentricity of the ellipses, the congruence coefficients or the
canonical correlations, parameters provided by our package.

= The diagram allows to identify errors in the bias, the orientation of
the main directions of the vector datasets or their relative variances.

= The mathematical development is exact and the use of the RMSE
error in the diagrams allows an exact comparison of the overall err o e

23



R package publicly available

SailoR: An Extension of the Taylor Diagram to Two-Dimensional Vector Data

A new diagram for the verification of vector variables (wind, current, etc) generated by multiple models against a set of observations is presented in this
package. It has been designed as a generalization of the Taylor diagram to two dimensional quantities. It is based on the analysis of the two-dimensional
structure of the mean squared error matrix between model and observations. The matrix is divided into the part corresponding to the relative rotation and
the bias of the empirical orthogonal functions of the data. The full set of diagnostics produced by the analysis of the errors between model and
observational vector datasets comprises the errors in the means, the analysis of the total variance of both datasets, the rotation matrix corresponding to the
principal components in observation and model, the angle of rotation of model-derived empirical orthogonal functions respect to the ones from
observations, the standard deviation of model and observations, the root mean squared error between both datasets and the squared two-dimensional
correlation coefficient. See the output of function UVError() in this package.

Version: 1.0

Depends: R (= 3.5.0)

Published: 2019-10-11

Author: Jon Saenz @ [aut, cphl, Sheila Carreno-Madinabeitia & [aut, cph], Santos J. Gonzalez-Roji @ [aut, cre, cph], Ganix Esnaola @ [cth,
cphl, Gabriel Ibarra-Berastegi @ [cth, cph], Alain Ulazia @ [ctb, cph]

Maintainer: Santos J. Gonzalez-Roji <santosjose.gonzalez at ehu.eus>

License: GPL-3

NeedsCompilation: no

CRAN checks: SailoR results

Dounloads:

Reference manual: SailoR.pdf

Package source:  SailoR_1.0.tar.gz

Windows binaries: r-deve R_1.0.zip, r-devel-gce8: SailoR_1.0.zip, r-release: SailoR 1.0
0S X binaries:  rrelease: SailoR_1.0.tgz, r-oldrel: SailoR 1.0.tgz

r-oldrel: SailoR 1.0.zip

Linking:

Please use the canonical form https://CRAN.R-project.org/package=SailoR to link to this page.

Figure 14: SailoR R package

Available from CRAN
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