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Robustness of ANN rainfall-runoff models (Zheng et al., 2017)
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« While obtained using ANN-type Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
models, the results are broadly

relevant to all classes of hydrological

motivated this -
Stu dy7 Robustness of conceptual rainfall-runoff models (Guo et al., 2020)
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Key Points: i i
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» Low performance robustness is
z‘:ﬁ: :?;g;;en;:fﬂzl‘::mess and Abstract Conceptual rainfall-runoff (CRR) models are widely used for runoff simulation and for
contribution, and low rainfall-runoff prediction under a changing climate. The models are often calibrated with only a portion of all available
ratio data at a location and then evaluated independently with another part of the data for reliability assessment.

Previous studies report a persistent decrease in CRR model performance when applying the calibrated

model to the evaluation data. However, there remains a lack of comprehensive understanding about the

nature of this “low transferability” problem and why it occurs. In this study we employ a large sample
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So, we have
trouble if the
hydro-climatic
conditions differ

too much between
calibration &
evaluation periods
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has been used to
understand

how performance
differs between
calibration and
evaluation data
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We know that CRR model performance decrease at a catchment,

The remaining
question...

when calibration & evaluation conditions differ, but ...

; of performance variation (robustness) differ across catchments?

hange across catchment characteristics?

N

large-sample hydrology!




Included 163 : ?Ett.ll|
HRS 0 Cracelant
catchments e
(large-sample o 0750801
hydrology) 2 gioe

Ran GR4J on all with SCE algorithm for parameter optimization

100 replicates on each catchment starting from different random seeds
Filtered out catchments with:

<0.75 mean KGE;

high KGE variability (95 Cl >3% mean KGE)




Large number
of split-sample
tests on each
catchment

with 50:50

calibration:
evaluation

data split

Split-sample Calibration

3 months



Overall KGE
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| *  Average performance (calbration) —— Hange of performance (evaluation} |

Focusing on three common CRR models GR4J, AWBM and CMD

We used the range of evaluation performance from all data splits to assess model
robustness. Evaluation performance is based on KGE, a weighted average of how
well the model simulates the observed data in:

serial correlation;
mean;
Variability

Each grey bar summarizes the variation in evaluation performance from all the
calibration/evaluation splits at each catchment along the x-axis (163 in total).

The longer a grey bar is, the higher variability so low robustness the catchment has.
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We now summarize model robustness with the SD of KGE at each
d catchment L 02
: EEE ATl The SD values are correlation with a wide range of catchment
catchments with: o . i . !
. characteristics including the long-term conditions and the mid- and 0
Low RR ratio, - : :
: T short-term variability of rainfall, PET and runoff, together with the
high variability of baseflow catchment tonoeraph L 02
contribution, POBraphy.
high runoff skewness 04

The key characteristics affecting CRR model robustness are:
long-term average Q & P 06
RR ratio and aridity

variability of annual BFI and Q skewness 08



Both studies found
asa
key factor related to

, butvia
different pathways!

Robustness of ANN rainfall-runoff models (Zheng et al., 2017)
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st ame s ANN models require a data-split process before calibration, for which
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+ Whi cbrained using ANN-ype it is more difficult to allocate data of similar statistical properties

models, the results are broadly
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» Low performance robustness is
related to high runoff skewness and

may wrwenetiov  For CRR models, high skewness tends to lead to smaller store
“ | capacities in the calibrated models (Appendix A2), which makes them
T Siporiog ormaton 1 ‘less flexible’ to deal with different hydro-climatic conditions.
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Transferability: relative difference of catchment conditions and model performance

(calibration vs. evaluation) -> how similar should calibration and evaluation conditions
be to warrant unchanged model performance?

Robustness: variation in absolute model performance -> under what catchment
condition is a model more likely to have stable/unstable performance?
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What are the key
factors for varying
model robustness

across catchments?
(Same as P13 but
including cross-
correlations)
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The plot highlights key factors related to low model Skew_runoff 0 R
robustness (solid blue and red dots in Rows 1-3) and their

cross-correlation. Al



» Relationships between Mean_RR_ratio, Mean_aridity, Skew_runoff and SD_BFI, and the
calibrated store capacity of each catchment from GR4J, AWBM and CMD (all in mm, averaged
across all calibration subperiod, so each dot represents a catchment.

Shaded cells highlight correlations and scatter plots between each pair of catchment
characteristic and calibrated store capacity. The pairwise Spearman’s correlations are shown in
the top-right triangle. The plot illustrates the relationship between low store capacity and
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