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Motivation
For applying the advection-dispersion models under field conditions,
hydro-geologists have proven that the magnitude of field-scale
dispersivity (macro-dispersivity) can be several orders of magnitude higher
than lab-scale value for the same material (Fiori et al., 2017). This increase
mainly attributes to the spatial variability of aquifer structure which can be
generally described by the spatial distribution of the hydraulic conductivity.
Considering the heterogeneous distribution of hydraulic conductivity as a
random field and relating flow and transport to its statistical moments has
been one of the primary goals of the field of stochastic modelling (e.g.
Dagan, 1989; Gelhar, 1993). A fundamental issue addressed by these works
is how macro-dispersivity can be related to the statistical properties of the
hydraulic conductivity field. However, the general applicability of the
stochastic approach is sometimes questionable due to several foundational
assumptions. And the first and second-order spatial statistics cannot
provide sufficient information on estimating of macro-dispersivity. The
conductivity fields with the same first two moments may produce very
different solute spreading because of the spatial patterns that are not
characterized by these statistics (e.g. Zinn and Harvey, 2003; Bianchi and
Pedretti, 2018). The concepts of connectivity and geological entropy then
emerge as other attempts to characterize the transport behavior from the
heterogeneous conductivity fields (e.g. Rizzo and de Barros, 2017; Bianchi
and Pedretti, 2017, 2018). In short, researchers have made great efforts to
predict solute transport behavior only from a characteristic description of
the conductivity field. Despite the helpfulness of these works in
understanding the correlation between the heterogeneity of conductivity
field and the transport behavior, a direct and efficient functional mapping
between the conductivity field and the transport behavior for predictive
purposes remains to be solved.

Methodology
a) Generating training datasets. Two-dimensional random fields of the

hydraulic conductivity are generated. Direct simulations with the
random walk particle tracking method (Salamon et al., 2006) are
then used to compute the macro-dispersivities of the generated
conductivity fields. The field dispersivity pairs consist of the training
datasets for the deep neural network model.

b) Training the CNN. The training datasets from the previous step are
then used to train our CNN that takes a heterogeneous conductivity
field as input and gives macro-dispersivity as output.

c) Estimating macro-dispersivities. The trained CNN is then used to
estimate macro-dispersivities of new conductivity fields that are not
in the training datasets.

Figure 1: Sketch of the framework.

Figure 2: Sketch of domain of
transport simulations showing the
initial location of trace source, the
control planes.

Figure 3: Comparison of effective
and apparent macrodispersivities
with the Dagan’s (Dagan, 1984) and
Gelhar’s (Gelhar and Axness, 1983)
analytical models (σlnK

2 = 0.1).
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Synthetic Experiments Setting
Synthetic experiments are conducted to demonstrate the capability of
the neural network to estimate the macro-dispersivity by considering
different variances of conductivity fields.

Results and Discussion
Fig. 6 displays the comparison of R2 from the above three experiments.
Generally, the CNN trained by conductivity fields with relatively large variances can
achieve better performance on estimations of macro-dispersivities for conductivity
fields with relatively small variances. The neural network trained by highly
heterogeneous fields seems to have a high ability to extract features of
heterogeneity. In Fig. 6(a4), the neural network trained by Var0.5 has much better
performance than the neural network trained by Var0.1, although the neural
network trained by Var0.5 has worse performance in its own test set.

Sixteen typical fltered results from the frst convolutional layer are
presented in Fig. 15(b) for estimating macro-dispersivityof the
conductivity feld shown in Fig. 15(a). It can be seen that in Fig. 15(b)
the CNN attempts to identify different features of the
heterogeneous conductivity feld. Apparently, we can see that,
feature 1, 3, 10, 13, 16 mainly capture the distributions of relatively
high lnK values of the original lnK feld. While feature 2, 4, 7, 11, 12,
14 mainly capture the distributions of relatively low lnK values of
the original lnK feld. Other features also reflect some other
heterogeneous patterns that are not prominent.

Conclusions
The following conclusions can be drawn from these experiments:
1. The estimating performance of CNN generally drops with

increasing variances of conductivity fields (increasing
heterogeneity) for the given size of training datasets (4000
fields) and data points (140×140).

2. The CNN trained by conductivity fields with a specific
variance has universality in estimating macro-dispersivity to
a certain extent because a well trained CNN will have the
capacity to extract different patterns of heterogeneity.
Consequently, the trained CNN can extract some standard
heterogeneous features of conductivity fields for estimating
macro-dispersivities.

3. Furthermore, the universality of the trained CNN decreases
with the increasing disparity between variances of
conductivity fields in training set and test set. And the CNN
trained by conductivity fields with relatively large variances
can have stronger universality of estimating.

4. In general, the deep neural network is a very promising
approach in building direct mapping between complicated
subsurface structure and solute transport behavior.
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Figure 4: Training process of the neural network with the training sets of
different variances.

Figure 5: Estimating macro-dispersivities of
felds with σlnK

2 =0.5 using neural network
model trained by felds with σlnK

2 = 0:3.

Figure 6: Comparison of R2 for
different cases; Var0.1 represents
the results of using the CNN
trained by the training set of
Var0.1 to estimate conductivity
fields in the test set of Var0.1;
Var0.1E0.2 represents the results
of using the CNN trained by the
training set of Var0.1 to estimate
conductivity fields in the test set
of Var0.2; The other labels have
similar meanings.

Figure 7: Illustration of features learned by the CNN, including (a) an
input lnK feld and (b) corresponding features obtained from the frst
convolutional layer.


