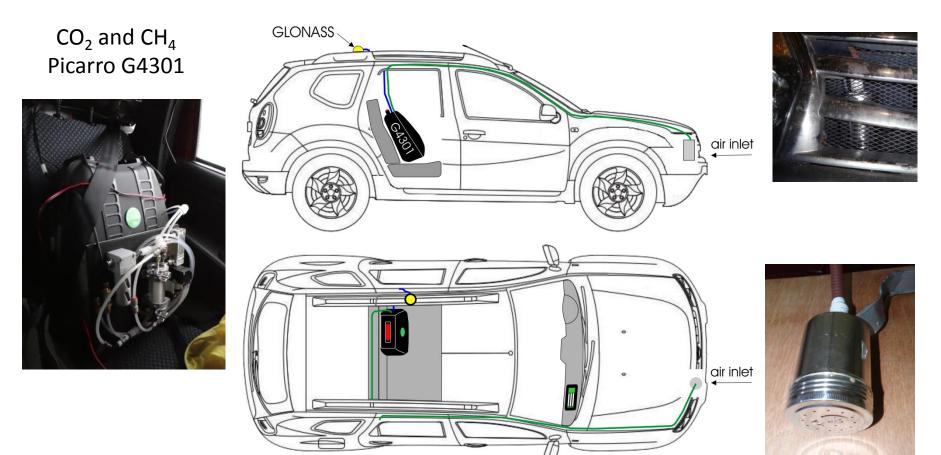
Studying the spatial and seasonal variability of greenhouse gases across West Siberia: large-scale mobile measurement campaigns of 2018-2019

V.E. Zuev Institute of Atmospheric Optics M.Yu. Arshinov , B.D. Belan , D.K. Davydov, A.V. Kozlov, A.V. Fofonov, V. Arshinova

Motivation

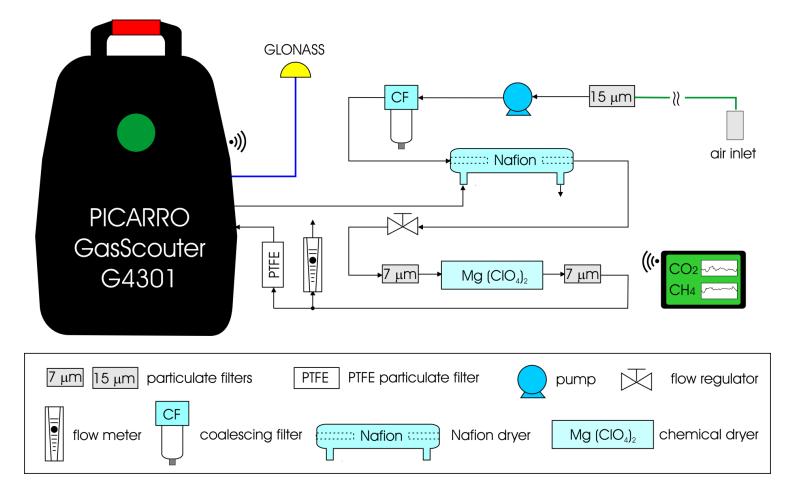
JR-STATION discontinued in 2013 Arctic tundra Typical and southern Forest tundra Northern taiga Middle taiga Southern taiga Subtaiga Forest steppe Steppe Altai Mountains Igrim Noyabr'sk Karasevoe West Siberia Berezorechka Vaganovo An-2 Azovo Vasyugan Swamp Tu-134 "Optik" Savvushka


discontinued in 2014

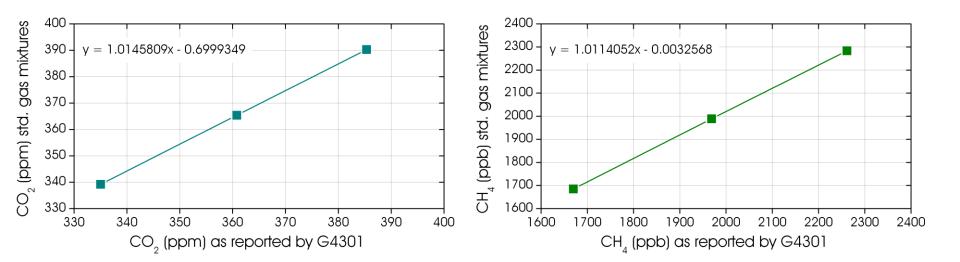
The continuous ground-based measurements of greenhouse gases carried out in Siberia in the past two decades allowed the long-term trends, as well as the diurnal and seasonal cycles of CO₂ and CH₄ to be derived for this poorly studied region (Belikov et al., 2019). To date, these in-situ observations are made at the joint Japan-Russia Siberian Tall Tower Inland Observation Network (JR-STATION) consisted of 6 automated stations that should be maintained several times per year.

The above network covers a significant part of the West Siberian Plain extending between 54.5° and 63.2° north latitude and between 62.3° and 85.0° east longitude. Its stations are spaced 300 to 900 km apart.

V.E. Zuev Institute of Atmospheric Optics Belikov et al. D Analysis of the Diurnal, Weekly, and Seasonal Cycles and Annual Trends in Atmospheric CO₂ and CH₄ at Tower Network in Siberia from 2005 to 2016. Atmosphere **2019**, 10, 689.

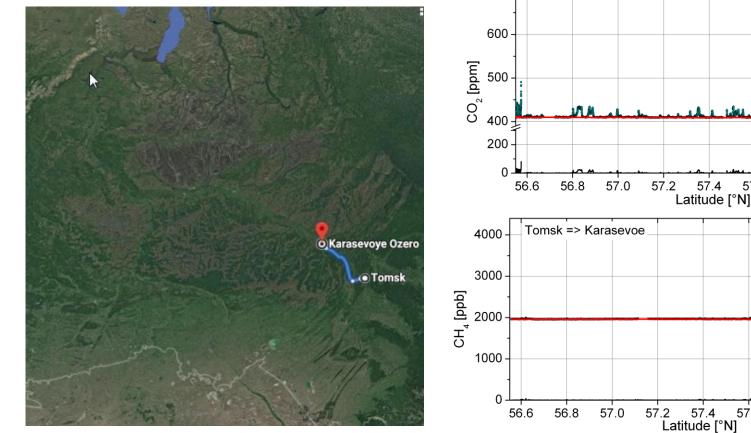

Experimental: mobile measurement platform

Experimental: ambient air delivering and drying



Experimental: calibration

		CH₄	CO ₂ (G4301)	CH₄ (G4301)
Standard 1	339.17 ppm	1685.17 ppb	335.01±0.16 ppm	1669.78±0.81 ppb
Standard 2	365.40 ppm	1988.74 ppb	360.78±0.17 ppm	1968.74±0.85 ppb
Standard 3	390.24 ppm	2283.61 ppb	385.35±0.17 ppm	2261.48±0.86 ppb



700

Distance 310 km

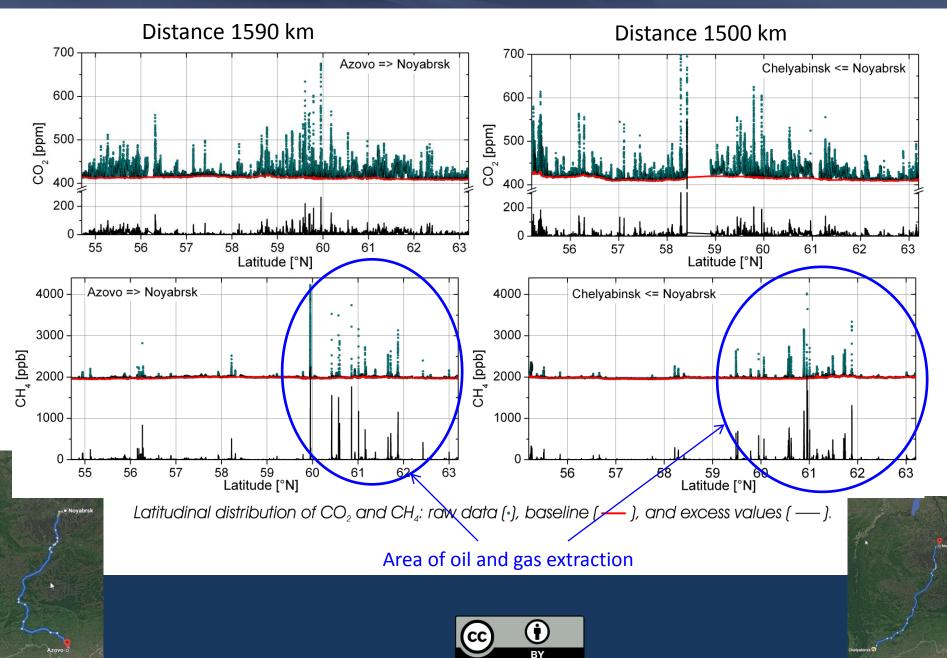
Latitudinal distribution of CO₂ and CH₄: raw data (\cdot), baseline (--), and excess values (--).

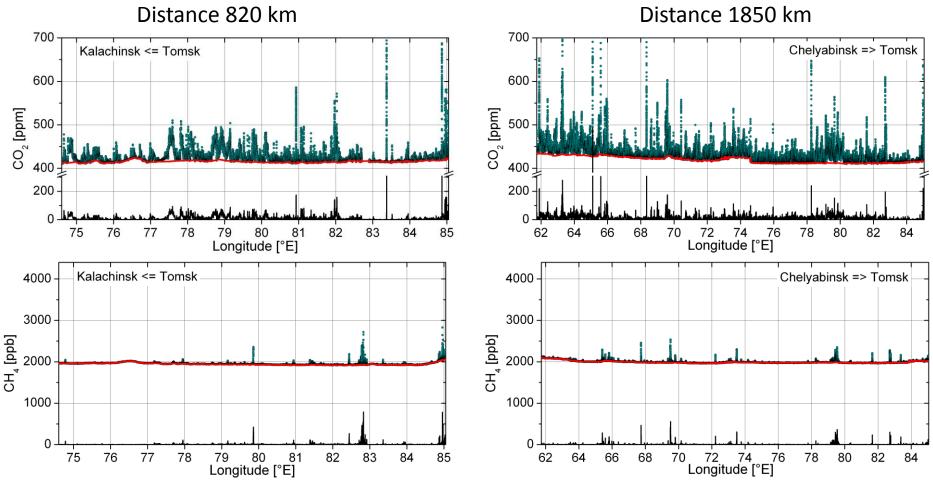
58.2

58.0

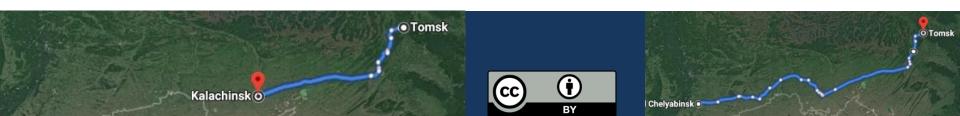
Tomsk => Karasevoe

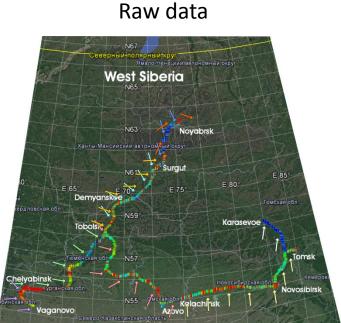
57.6

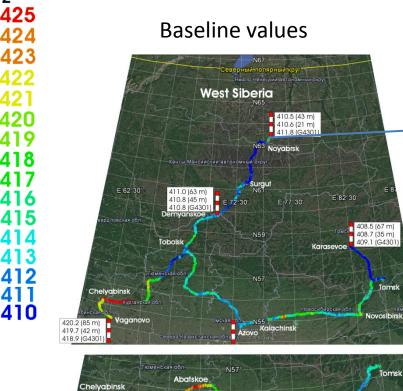

57.6


57.8

57.8

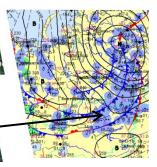

58.0


58.2



Longitudinal distribution of CO_2 and CH_4 : raw data (*), baseline (-----), and excess values (-----).

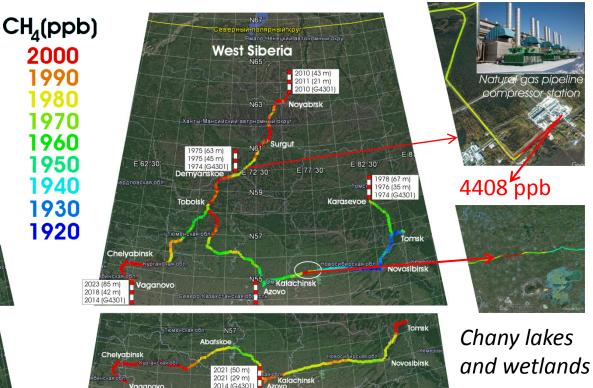
422.0 (50 m)


422.6 (29 m)

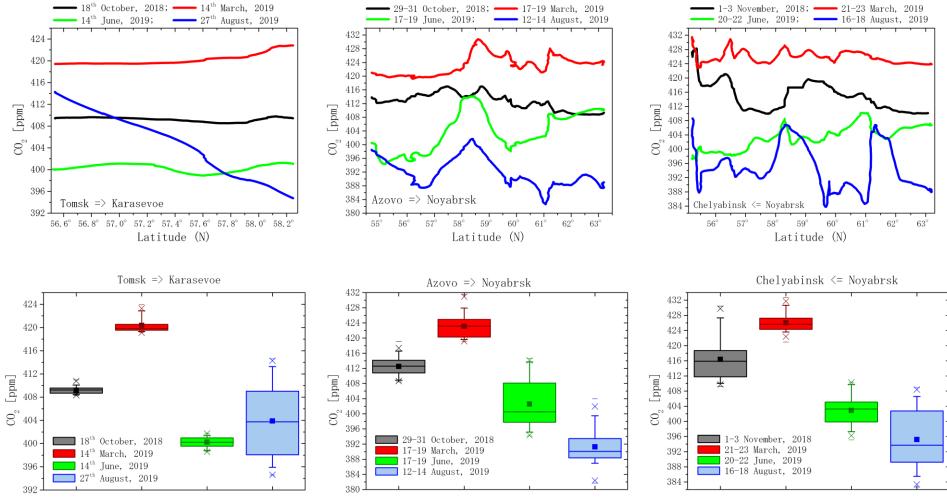
423.2 (G430

Azov

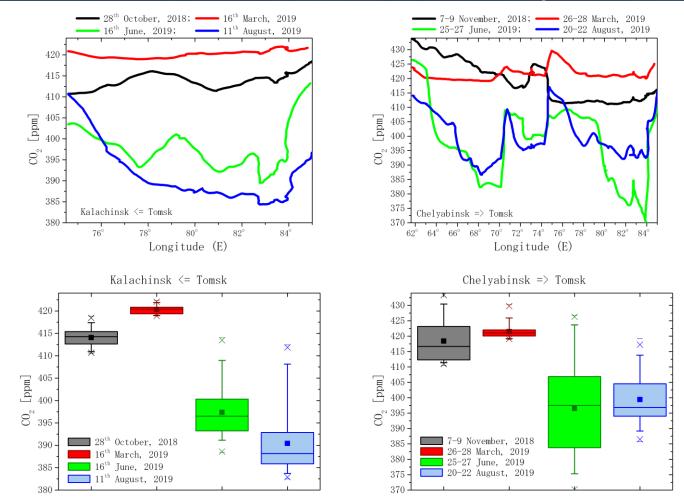
Vaganovo


vovosibirsk

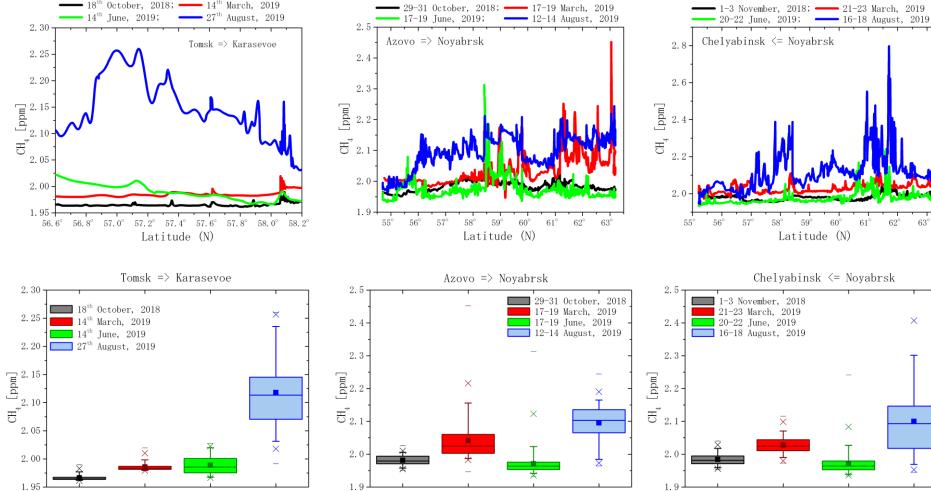
Raw data



Baseline values

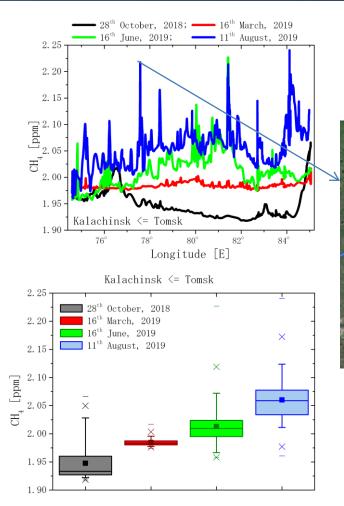


Latitudinal distribution of CO₂ baseline values: seasonal pattern

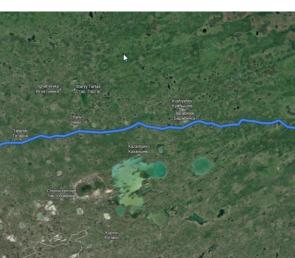


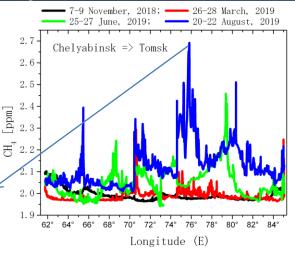
Longitudinal distribution of CO₂ baseline values: seasonal pattern

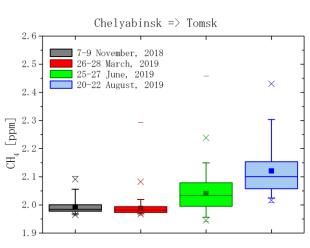
Latitudinal distribution of CH₄ baseline values: seasonal pattern



 62°


63


Х


Longitudinal distribution of CH₄ baseline values: seasonal pattern

Chany lakes and wetlands

Average baseline values

Transect	Date	CO ₂ , ppm			CH ₄ , ppb		
(distance)		Mean	IQR	Median	Mean	IQR	Median
	18.10.2018	409.2±0.5	0.9	409.2	1966.5±4.7	3.7	1964.4
Tomsk \rightarrow Karasevoe	14.03.2019	420.4±1.1	1.0	419.8	1985.7±6.7	5.3	1983.4
(310 km)	14.06.2019	400.2±0.9	1.4	400.2	1988.8±15.8	25.7	1985.7
	27.08.2019	403.9±5.8	10.9	403.7	2118.0±59.6	74.7	2113.4
	29-31.10.2018	412.5±2.3	3.3	412.6	1981.8 ± 15.1	23.3	1979.3
Azovo \rightarrow Noyabrsk	17-19.03.2019	423.1±2.9	4.6	423.1	2040.9±54.2	57.5	2025.2
(1590 km)	17-19.06.2019	402.6±5.8	10.4	400.5	1971.0±34.5	22.7	1963.8
, , , , , , , , , , , , , , , , , , ,	12-14.08.2019	391.3±4.1	5.1	390.1	2095.5±51.9	70.2	2103.1
Noyabrsk → Chelyabinsk	1-3.11.2018	416.4±5.1	6.9	415.9	1984.1±17.5	23.4	1981.3
	21-23.03.2019	426.0±2.2	2.9	425.6	2028.0±24.7	33.3	2024.7
(1500 km)	20-22.06.2019	402.9±3.6	5.2	403.3	1971.1±29.4	26.8	1964.1
. ,	16-18.08.2019	395.2±7.1	13.5	393.7	2100.2±104.3	128.8	2093.3
	28.10.2018	414.1±1.9	2.8	414.3	1947.7±31.4	33.1	1933.4
Tomsk \rightarrow Kalachinsk	16.03.2019	420.3±0.9	1.5	420.4	1984.5±5.8	7.1	1983.2
(820 km)	16.06.2019	397.4±5.4	7.1	396.5	2012.9±32.0	28.9	2009.4
, <i>,</i> ,	11.08.2019	390.4±6.6	7.0	388.2	2060.1±36.0	43.7	2058.8
	7-9.11.2018	418.4±6.5	10.8	416.7	1993.0±25.8	23.1	1984.5
Chelyabinsk \rightarrow Tomsk	26-28.03.2019	421.5±2.1	2.0	421.1	1987.4±24.0	21.0	1981.8
(1850 km)	25-27.06.2019	396.5±13.7	23.1	397.5	2040.5±63.8	83.3	2033.4
, <i>, ,</i>	20-22.08.2019	399.4±7.6	10.6	396.9	2120.8±90.6	95.8	2100.6
	18.10-9.11.2018	415.6±5.4	5.9	414.1	1980.5±26.69	26.1	1979.4
Mast Sibaria	14-28.03.2019	422.9±3.0	4.6	422.0	2011.4±41.23	46.8	2000.5
West Siberia	14-27.06.2019	400.0±9.1	9.5	400.5	1999.2±54.18	58.9	1982.7
	11-28.2019	395.1±7.6	10.6	393.4	2100.5±81.7	84.6	2090.2

Summary

✓ Mobile measurement campaigns carried out across West Siberia in 2018-2019 allowed the spatial distribution of CO_2 and CH_4 to be obtained with a high resolution.

✓ Analysis of the data obtained shows the presence of both a latitudinal gradient and mesoscale inhomogeneities in the spatial distribution of greenhouse gases, especially methane.

 \checkmark The average baseline values of CO₂ and CH₄ mixing ratios observed in West Siberia in late October - early November 2018, March, June and August 2019 were:

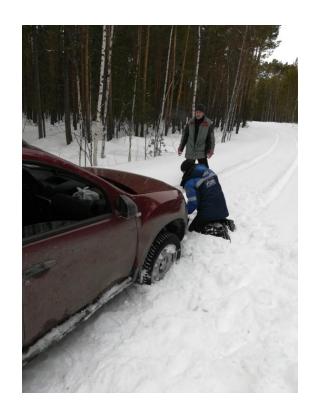
- for CO2: 414.1; 422.0; 400.5; 393.4 ppm, respectively;

- for CH4: 1979.4; 2000.5; 1982.7; 2090.2 ppb, respectively

Conclusions/outlook

- ✓ Regular mobile campaigns will allow the traffic related CO₂ emissions to be removed from mole fractions measured at JR-STATION sites using an approach proposed by Schmidt et al. Schmidt et al., "Removing traffic emissions from CO₂ time series measured at a tall tower using mobile measurements and transport modeling," Atmospheric Environment 97, 94–108 (2014).
- To do that, the measurement suite of our not a big mobile lab should be augmented at least with CO analyzer and a wind sensor.

- ✓ We plan to continue mobile campaigns to cover interannual variations.
- ✓ Unfortunately, a campaign scheduled for March 2020 did not take place due to restrictions on inter-regional traveling caused by COVID-19 outbreak situation.



Thank you for attention!

