

EGU2020-3269

Future changes of summer monsoon characteristics and evaporative demand over Asian in CMIP6 simulations

Kyung-Ja Ha^{1,2*}, Suyeon Moon^{1,2}, Axel Timmermann¹, and Daeha Kim³

¹ Center for Climate Physical, Institute for Basic Science, Busan, South Korea
 ² Department of Climate System, Pusan National University, Busan, South Korea
 ³ Climate Application Department, APEC Climate Center, Busan, South Korea
 *Corresponding author : Kyung-Ja Ha, E-mail: kjha@pusan.ac.kr

K.-J. Ha, S. Moon, A. Timmermann, and D. Kim, 2020: Future changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulations, Geophysical Research Letter, Doi: 10.1029/2020GRL087492.

Background

- Under global warming, monsoon seasons are expected to change in terms of duration, frequency of climate extremes and altered hydrologic conditions.
- To implement sustainable water management plans, understanding the response of monsoon systems to greenhouse warming is essential.
- We use the latest subset of CMIP6 projections to further document the sensitivity of the Asian summer monsoon (ASM) to greenhouse warming.
- Despite the vital roles of the regional monsoon systems, sub-regional future changes have not been analyzed in detail.
- We focus on local changes in four subregions of the Asian monsoon domain.

Data

16 CMIP6 Daily precipitation, 2m air temperature, and monthly runoff : Historical (1979-2014) & ssp2-4.5 (2065-2100) & (ssp5-8.5)

To quantify the fidelity of the 16 CMIP6 models,

GPCP pentad <u>precipitation</u> data / 1979-2014 (36-yr)

ERA-Interim daily air-2m temperature, monthly evapotranspiration

Monthly <u>root-zone soil moisture</u> from the Global Land Evapotranspiration Amsterdam Model (**GLEAM**) v.3.3b for monthly runoff

Figure. Taylor diagram for summer precipitation (black, PR) and air2m temperature (red, TAS) over the Asia [0-60°N, 60-160°E] during MJJAS among 16 CMIP6 models compared with the GPCP for PR and ERA-Interim for TAS during the period 1979 to 2014.

Definition of summer monsoon domain

- Annual cycle of precipitation is the most distinctive characteristic of monsoon system.
- Since the harmonic analysis is relatively insensitive to noise, **we can get useful signal regardless of the noise.**

Global monsoon region (shaded)

$$AmpR(n) = AMP_0 + \sum_{t=Jun}^{t=Aug} AMP(n) \times \cos\left[\frac{2\pi n}{T} (t - PHA(n))\right]$$
(1) $log(AmpR(2)/AmpR(1)) < -0.1$

(2) $AMP(1) > 2mm \, day^{-1}$

• The main advantage of our new definition is its robustness,

as it doesn't consider precipitation in mesoscale and smaller scales by using harmonic analysis.

Changes in precipitation rate and rainy season

- Summertime 'wet-get-wetter' response is shown as the climate warms.
- Rainfall will amplify at about 20% in the future over the present wet-regions.
- The largest precipitation sensitivity is found over IND (5.4 %/°C) & EA (4.6 %/°C).
- The precipitation sensitivity in the Asian summer sub-regional monsoon systems increases considerably more

than for the GM.

Changes in summer rainy season

- Modified Wang and LinHo's (2002) definition for onset and retreat of monsoon is used.
- EA: longer rainy season (onset ▼ & retreat ▲)
- IND: longer rainy season (detreat ▲)
- WNP: Earlier onset (▼)
- ICP: slightly delayed onset (△)

Changes in extreme rainfall

- **P20**: 20-year return value of precipitation
- RX1day : maximum1-day precipitation
- **R95p** : the daily precipitation exceeds the 95th percentile of the wet-day precipitation
- The strong increase in P20 is projected for EA (69 %) and IND (57 %).
- Extreme change over EA is largest; RX1day (68 %) and R95p (42 %).

Changes in runoff and evapotranspiration

- While both summer precipitation and runoff increase.
- Increasing evapotranspiration (E) could balance the impacts of growing precipitation on runoff generation.
- E will increase together with the enhance precipitation.
- The less trends of runoffs thus could be attributed to the rising E.

Changes in runoff and evapotranspiration

- Considering the relative drought definition, the upward E trend is not a signal of wetting land surfaces owing to more rapidly rising E_w.
- The steeper E_w trend implies that atmospheric water demands increasingly deviate from the land-surface water consumption.
- Future droughts will become even more severe the 'business as usual' SSP5-8.5 scenario.
- Hence, despite growing precipitation, future droughts will become more intense due to more rapidly rising atmospheric water demands.

Summary

• This study investigates the response of monsoon rainfall, duration, and

extremes to greenhouse warming using 16 CMIP6 models.

- Within the overall Asian monsoon domain, East Asia and India will be affected most strongly.
- The Asian monsoon region will be exposed to more frequent drought conditions.

