
Automated mapping of Antarctic supraglacial lakes and streams 

using machine learning 

Mariel Dirscherl1,*, Andreas Dietz1, Celia Baumhoer1, Christof Kneisel2, Claudia Kuenzer1,2 

 

1German Aerospace Center (DLR), Earth Observation Center (EOC), German Remote Sensing Data Center (DFD) 
2University Wuerzburg, Institute of Geography and Geology 
*E-Mail: mariel.dirscherl@dlr.de 
 

 

> EGU 2020 DLR.de  •  Chart 1 

Link to Publication 

mailto:mariel.Dirscherl@dlr.de
https://doi.org/10.3390/rs12071203


Why is the mapping of Antarctic supraglacial lakes important? 

Supraglacial lakes may impact Antarctic ice dynamics through three main processes (P1-P3):  
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 A circum-antarctic mapping of Antarctic supraglacial lakes is overdue and 

required to study these processes in more detail! 

Source: [1] 
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Study aim & overall workflow 

Study aim: 

Development of an automated supraglacial lake mapping 

method transferable in space and time using spaceborne 

Sentinel-2 data and state-of-the-art image processing. 

 

Study design: 

Application of a supervised Machine Learning algorithm, 

namely Random Forest, trained on optical Sentinel-2 and 

auxiliary TanDEM-X topographic data. 

 

Overall workflow: 

• Data preparation 

• Model training and prediction 

• Post-classification 

• Accuracy assessment 

Workflow for automated supraglacial lake mapping 

Source: [1] 



Edited 90-m Antarctic TanDEM-X DEM (2013-2014) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Training labels 

• Created on basis of Sentinel-2 in GEE 

• 4 main classes: “water”, “snow/ice”, “rock”, “shadow”  

 

 

 

 

Data preparation: input data 
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Sentinel-2 training (2019) and test data (2017, 2018, 2020) 

© DLR 

Modified after [1] 
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Data preparation: input data for application example 

Sentinel-2 coverage Amery Ice Shelf 2017-2020 

 84 additional acquisitions were selected for Amery Ice Shelf to test our algorithm for mapping 

of maximum lake extents over four consecutive melt seasons at full ice shelf coverage  

Source: [1] 

b) 



Data preparation: variable selection 
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Input features were selected on basis of a discrimination analysis 

of the reflectance / topographic properties of water, snow/ice, rock 

and shadow on ice: 

 

 

 

 

 
Selected input features: 

Source: [1] 

New Water Index 

• Sentinel-2 

• Bands: 2-8A  

• Indices: e.g. NDWI1, NDWI2, SWI, SAVI, SI, 

NDGI, NDSI, NWI, AWEIsh, AWEInsh, TCwet [2-12] 

 

• TanDEM-X topographic variables 

• DEM, slope, relief, roughness 

 

• Training labels 

 
Training data 

Test data 



Random Forest was trained on subsets (~70%) of all 14 collocated 

training datasets using the Python programming language.  
 

Background Random Forest: 
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Model training and prediction 

Training Subset 

water 

shadow rock 

ice 

• Random Forest is characterized by an ensemble of 

uncorrelated decision trees, each built on the basis of 

a randomly sampled subset of training data (bagging) 
 

• New unclassified data is predicted based upon the 

maximum votes of all independent decision trees 

e.g. [13-15] 
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Post-classification: before vs. after 

     Cosgrove Ice Shelf, WAIS 

Modified after [1] 

© Copernicus Sentinel-2 data, 12 January 2017 

cloud shadow 

bands & indices mask 

before after 

1 

2 

icebergs 

coastline mask 
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Automated mapping results 

     A) George VI Ice Shelf, Antarctic Peninsula 
 

• Extensive supraglacial meltwater network visible on ice 

shelf on 19 January 2020 
 

• ~831.7 km2 covered by supraglacial meltwater 
 

• Very long meltwater channels and large surface ponds 
 

• Artefacts (e.g. topographic shadow, shadow in 

crevasses) successfully masked 

© Copernicus Sentinel-2 data 
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Automated mapping results 

     B) Larsen C tributaries, Antarctic Peninsula 
 

• Widespread surface melt visible on 19 

January 2020 
 

• ~0.88 km2 covered by supraglacial lakes 
 

• Mainly small melt ponds 
 

• Artefacts (e.g. topographic shadow, 

shadow in crevasses) successfully masked 

© Copernicus Sentinel-2 data 
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Automated mapping results 

     C) Abbott Ice Shelf, West Antarctica 

© Copernicus Sentinel-2 data 

• Widespread surface melt visible near 

grounding line on 12 January 2017 
 

• ~0.81 km2 covered by supraglacial lakes 
 

• Mainly small melt ponds 
 

• Artefacts (e.g. cloud shadow) successfully 

masked 
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Automated mapping results 

     D) Adelie Coast, East Antarctica 

© Copernicus Sentinel-2 data 

• Widespread surface melt visible on ice 

tongue on 23 December 2019  
 

• ~0.58 km2 covered by supraglacial lakes 
 

• Mainly small melt ponds 
 

• Artefacts (e.g. blue ice, ocean, shadow in 

crevasses) successfully masked 
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Application example: spatio-temporal lake dynamics on Amery Ice Shelf 
 

Maximum lake extent and rock outcrop map for 2019 Maximum lake extent development over four years 

Supraglacial lake occurrence within defined geographical units 

Source: [1] 

Modified after [1] 

Source: [1] 
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Accuracy Assessment 

The mapping results were evaluated by means of a confusion matrix 

which allowed deriving common statistical accuracy metrics including 

Recall (R) and Precision (P), F-score (F1), Errors of Commission (EC) 

and Omission (EO) as well as Cohen’s Kappa (κ) (e.g., [16-19]). 

Modified after [1] 

• Overall Kappa both classes: 0.883 
 

• Average F1 water class: 88.62 % 
 

• Increased false positives (EC, P) 

mainly due to shadow on ice 

below clouds (e.g. Hull Glacier) 
  

• Increased false negative pixels 

(EO, R) mainly at lake edges and 

due to the TanDEM DEM being 

from a different time step (e.g. 

Amundsen Bay, Wilhelm II Coast) 
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Conclusion & Outlook 

Conclusion 

• Random Forest has proven its applicability for mapping of supraglacial lakes in Antarctica and enabled the development of the 

first automated mapping method applied to Sentinel-2 data distributed across all three Antarctic regions 
 

• The average F1 score for the classification of surface lakes across all test sites was computed at ~89 % and the overall Kappa 

reached 0.883 suggesting the good functionality and spatio-temporal transferability of our workflow 
 

• The main remaining limitations of our workflow are associated with (1) the lack of up-to-date topographic (and coastline) 

data, (2) difficulties in classifying pixels at lake edges and (3) shadow on ice below thick clouds in Sentinel-2 imagery 

 

Outlook  

• Ongoing work involves the improvement of the Random Forest model with more training data e.g. on shadow on ice as well 

as the application of our workflow to the whole Antarctic continent 
 

• Besides, the results of this study are used for further methodological developments using Sentinel-1 
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