Topological waves in geophysical and astrophysical flows

Antoine Venaille

EGU, May 8 2020

A precursor of El Nino

temperature anomaly

Eastward propagation of an equatorially trapped mode without backscattering. Why ?

Exotic materials isolant in the bulk...

Exotic materials isolant in the bulk...

...but excellent electronic conduction properties at the boundary

Exotic materials isolant in the bulk...

...but excellent electronic conduction properties at the boundary

- The number of unidirectional edge modes is related to a topological invariant
- Importance of discrete symmetries.

Exotic materials isolant in the bulk...

...but excellent electronic conduction properties at the boundary

- The number of unidirectional edge modes is related to a topological invariant
- Importance of discrete symmetries.

Broken symmetries $\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla P - g \mathbf{e}_z - 2 \mathbf{\Omega} \times \mathbf{u}$

I. Equatorial Waves

Shallow water model

 $\partial_t h + \nabla \cdot (h \mathbf{u}) = 0,$ $\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -g \nabla h - f \mathbf{n} \times \mathbf{u}.$

Coriolis parameter $f = 2 \mathbf{\Omega} \cdot \mathbf{n}$

2D flow model, broken time reversal symmetry

Linear dynamics

Linear dynamics

Free modes of Laplace Tidal Equations $\partial_t u = -g \partial_x \eta + f v$ $\partial_t v = -g \partial_y \eta - f u$ $\partial_t \eta = -H \partial_x u - H \partial_y v$

Linear dynamics

Free modes of Laplace Tidal Equations $\partial_t u = -g \partial_x \eta + f v$ $\partial_t v = -g \partial_y \eta - f u$ $\partial_t \eta = -H \partial_x u - H \partial_y v$

Kelvin 1879

$$\begin{aligned} \partial_t u &= -g \partial_x \eta + f v \\ \partial_t v &= -g \partial_y \eta - f u \\ \partial_t \eta &= -H \partial_x u - H \partial_y v \end{aligned}$$

Kelvin 1879

Ψ

$$\begin{aligned} \partial_t u &= -g \partial_x \eta + f v \\ \partial_t v &= -g \partial_y \eta - f u \\ \partial_t \eta &= -H \partial_x u - H \partial_y v \end{aligned}$$

$$= (u, v, \eta), \quad \Psi = \hat{\Psi}e^{i\omega t - ik_x x - ik_y y}$$
Poincaré
$$\hat{\Psi}_+$$
geostrophic
$$\hat{\Psi}_1$$

$$\hat{\Psi}_0$$
Poincaré
$$\hat{\Psi}_1$$

$$\hat{\Psi}_0$$

$$\hat{\Psi}_1$$

$$\omega^2 = f^2 + c^2 \left(k_x^2 + k_y^2 \right)$$

Kelvin 1879

Rotation opens a frequency gap

Kelvin 1879

$$\Psi = (u, v, \eta), \quad \Psi = \hat{\Psi} e^{i\omega t - ik_x x - ik_y y}$$

$$\partial_t u = -g \partial_x \eta + f v$$

$$\partial_t v = -g \partial_y \eta - f u$$

$$\partial_t \eta = -H \partial_x u - H \partial_y v$$

 $\omega^2 = f^2 + c^2 \left(k_x^2 + k_y^2 \right)$

Equatorial Beta Plane

Matsuno 1966

 $f = \beta y$

Equatorial Beta Plane

Matsuno 1966

 $f = \beta y$

Two modes with eastward group velocity filling the frequency gap.
How to explain the global shape of the spectrum ?

Topology

It classifies objects according to global properties.

singularities in vector bundles

e.g. number of holes

Topology

It classifies objects according to global properties.

singularities in vector bundles

e.g. number of holes

The first Chern number

It counts the number of singularities in a bundle of vectors parameterized on a closed surface.

Winding of eigenmodes

f-plane shallow water eigenmode

$$\Psi = \begin{pmatrix} \hat{u} \\ \hat{v} \\ \hat{\eta} \end{pmatrix}$$

A (local) geometrical quantity

Berry curvature $\mathbf{B} = i \nabla_p \times \left(\Psi^{\dagger} \nabla_p \Psi \right)$

A (global) topological number

Bulk-edge correspondence

The correspondence is guaranteed by the Atiyah–Singer index theorem Faure 2018

Bulk-edge correspondence

The correspondence is guaranteed by the Atiyah–Singer index theorem Faure 2018

Bulk-edge correspondence

The correspondence is guaranteed by the Atiyah–Singer index theorem Faure 2018

II. Acoustic-Gravity Waves

Breaking mirror symmetry

Breaking mirror symmetry

Breaking mirror symmetry

Linearize around a state of rest with density profile $\rho_o(z)$

Compressibility: sound waves

Compressibility: sound waves

Buoyancy: Gravity Waves

Compressibility: sound waves

Buoyancy: Gravity Waves

Does it always exist ?

Compressibility: sound waves

Buoyancy: Gravity Waves

Linearized equation

$$\partial_{t} \begin{pmatrix} \tilde{u} \\ \tilde{w} \\ \tilde{\theta} \\ \tilde{p} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & -c_{s}\partial_{x} \\ 0 & 0 & -N & S - c_{s}\partial_{z} \\ 0 & N & 0 & 0 \\ -c_{s}\partial_{x} & -S - c_{s}\partial_{z} & 0 & 0 \end{pmatrix} \begin{pmatrix} \tilde{u} \\ \tilde{w} \\ \tilde{\theta} \\ \tilde{p} \end{pmatrix}$$

Buoyancy frequency

Stratification parameter

$$N^2 = -g\frac{\partial_z \rho_0}{\rho_0} - \frac{g^2}{c_s^2}$$

$$S = \frac{1}{2} \left(\frac{N^2 c_s}{g} - \frac{g}{c_s} \right)$$

Mirror symmetry recovered when S=0 !

Manolis Perrot

Four degeneracy points at S=0

Manolis Perrot

Spectral flow

Solid boundary

Prospect : observation of Lamblike waves?

In the ocean

In stars

Iga 2001 predicts absence of Lamb like due to finite size effect

III. Other manifestations of topology in geophysical waves

III.1 Coastal Kelvin waves

Is it topological? short answer is probably not. But...

A bulk topological invariant for f-plane waves ?

A bulk topological invariant for f-plane waves ?

Poincaré (n = +1)

A bulk topological invariant for f-plane waves ?

Poincaré (n = +1)

Clément Tauber

Need a regularization, e.g. with odd viscosity

$$\begin{aligned} \partial_t u &= -g\partial_x \eta + (f + \nu_o \Delta)v \\ \partial_t v &= -g\partial_y \eta - (f + \nu_o \Delta)u \\ \partial_t \eta &= -H\partial_x u - H\partial_y v \end{aligned}$$

« The number of unidirectional states filling the frequency gap is topologically protected » **NO!**

« The number of unidirectional states filling the frequency gap is topologically protected » **NO!** « The number of states gained by a given band when varying parameter kx is topologically protected » **NO!**

A weaker form of bulk-boundary correspondence still holds (thanks to C. TAUBER)

Nicolas Pérez

Conclusion

Breaking time reversal symmetry with rotation

- Topological invariant related to emergence of Yanai/Kelvin waves
- Delplace Marston Venaille 2017

Breaking mirror symmetry with gravity

- Topology predicts the emergence of Lamb-like waves. Observation ?
- Perrot Delplace Venaille 2019

Coastal Kelvin waves are also topological, but in a weaker sense

- Apparent breaking of «Bulk-boundary correspondence»
- Tauber Delplace Venaille 2019, 2020

Manifestation of Berry curvature in geophysical ray tracing

- Formal analogy between extraordinary Hall effect and equatorial drift
- Perez Delplace Venaille, in prep.

Collaborators

Pierre Delplace (Lyon)

Brad Marston (Brown)

Clément Tauber (Paris)

Nicolas Perez (Lyon)

Manolis Perrot (Patagonia?)